C8-
Chain
C7 -
Product
Quotient
C6-
Basic
Derivatives
S2-
Indeterminate forms
Harder Questions, mixed
100

f(x) = (2x+1)²

Find f'(x)

2(2x+1) • 2 

OR

 4(2x+1)

OR

8x+4

100

h(x) = (x²-4)(3x+2)

Find h'(x)

(3x+2)(2x)+(x²-4)(3) 

OR

9x²+4x-12

100

f(x) = 3x

find f'(x)

3

100

Limit of f(x) as x approaches 3

f(x) = (x2-6x+9) / (x-3)

0
100

h(x) = (sin(x) + cos(x))2 / (3x3-4x+2x2-1)

h'(x)


((3x3-4x+2x2-1)(2)(cos2(x)-sin2(x)) - (9x2-4+4x)(sin(x)+cos(x))2) / (3x3-4x+2x2-1)2

200

f(x) = 1 / (x²+9x)²

Find f'(x)

-2(2x+9) / (x²+9x)³

This was the in class example on 10/01/25!

200

h(x) = (x⁴+2x²-1) / (3x²-4x+1)

Find h'(x)

((3x²-4x+1)(4x³+4x) - (x⁴+2x²-1)(6x-4) ) / (3x²-4x+1)²

200

f(x) = sin(x)

Find f'(x)

cos(x)

200

Limit of f(x) as x approaches 4

f(x) = (x2-16)/(x-4)

8

200

h(x)= sin(x)cos(x)


Find h'(x)

-sin2x + cos2x

300

f(x) = (sin(x))² + 3x

Find f'(x)

2(sin(x))+cos(x)+3

300

h(x) = sin(x) / cos(x)

Find h'(x)

sec²x

300

f(x) = cos(x)

Find f'(x)

-sin(x)

300

Limit of f(x) as x approaches 2

f(x) = x-2/x2-4

1/4

300

As x approaches 0 of f(x), f(x) approaches what number

f(x) = -1/|x|

Negative infinity

400

f(x) = (3x³-2x+5x²-3) ^ (2/3)

2(9x²+10x-2) / 3(3x³ + 5x² -2x -3)

400

h(x) = (x²-2x+3)² • (3x+2)³

Find h'(x)

(3x²+2)³•(2(x²-2x+3)(2x-2)) + (x²-2x+3)²•(3(3x+2)²(3))

400

f(x) = tan(x)

f'(x)

sec2(x)

400

Limit of f(x) as x approaches 3

f(x) = (x2-3x) / (√(x+6) -3)

18

400

f(x) = tan(x)cos(x)

Find f'(x)

f'(x) = cos(x)

500

f(x) = ((x³+2x²+5x-3) ^(3/2)) / ((3x+2)^2)

(3x+2)²•(3/2)•(√(x³+2x²+5x-3)•(3x²+4x+5) + ((x³+2x²+5x-3)^(3/2) )•(2)•(3x+2)•(3)

500

h(x) = (x2+3x-1)5 / (x3+6x+2)3

Find h'(x)

(  (x3+6x+2)3 * 5(x2+3x-1)4*(2x+3) - (x2+3x-1)5 *3(x3+6x+2)2*(3x2+6)  ) / (x3+6x+2)6

500

f(x) = sec(x)

f'(x)

sec(x)tan(x)

500

Limit of f(x) as x approaches 0

f(x) = (x³+4x²+5x-10) / (x-1)

16

500

f(x) = e5sinx

f'(x)

f''(x)

f'(x) = 5cosx*e5sinx

f''(x) = -5sin(x)*e5sinx + 25cos2(x)*e5sinx

M
e
n
u