Changing Scientific Notation to Standard Notation After * & /
Multiplying W/ Negative Exponents
Dividing W/ Negative Exponents
Multiplying
Dividing
100

(6 x 103) x (2 x 105)

Solve in standard form

1,200,000,000

100

(8.18 x 10-6) x (1.15 x 10-5)

9.407 x 10-11

100

(5.01 x 102)/(4.6 x 10-3)

1.08913043 x 105

100

(4*105)*(5*1012)

20*1017

or

2*1018

100

(5.3 x 106)/(4.2 x 104)

1.26 x 102

200

(4 x 105)/(16 x 102)

250

200

(1.9 x 10-3) x (2 x 104)

3.8 x 101

200

(7.6 x 100)/(5.4 x 10-6)

1.40740741 x 106

200

(6*103)*(2*105)

1.2*109

or

12*108

200

(9 x 108)/(2 x 102)

4.5 x 106

300

(2.4 x 10-3) x (4.5 x 10-3)

.0000108

300

(5.8 x 10-6) x (2 x 104)

11.6 x 10-2

or

1.16 x 10-1

300

(2.04 x 10-1)/(2 x 10-2)

1.02 x 101

300

Solve (5.1*104)*(2.5*103)

1.275*108

or

12.75*107


300

(3.66 x 105)/(2.0 x 103)

1.83 x 102

400

(8.42 x 103)/(5 x 102)

16.84

400

(3.8 x 10-6) x (2.37 x 10-3)

9.006 x 10-9

400

(5.5 x 10-1)/(5.3 x 102)

1.03773585 x 10-3

400

(1.25 * 104)(4 * 104)

5 * 108 

400

(4.5 x 1028)/(3 x 1015)

1.5 x 1013 

500

TRUE OR FALSE

(2 x 104) x (8.1 x 10-1)

and

(2.4 x 10-9)/(6.75 x 10-12)

are the same in standard notation (What are both in standard notation?)

TRUE

16,200

500

(3.2 x 10-2) x (1.2 x 10-4) x (2.8 x 102)

10.752 x 10-4 

or

1.0752 x 10-3

500

(5.2 x 104)/(1.5 x 10-2)/(.9 x 10-4)

3.851 x 1010

500

Light travels at a speed of 1.86 x 105 miles per second. It takes light from the Sun about 4.8 x 103 seconds to reach Saturn. Find the approximate distance from the Sun to Saturn. 

8.928 x 108

500

When the Sun makes an orbit around the center of the Milky Way, it travels 2.025 x 104 kilometers. The orbit takes 225,000,000 years. At what rate does the Sun travel?

9 x 105 km/year

or

.9 x 104 km/year

M
e
n
u