(f−g)(x)
f(x)=x^2−7x−30
g(x)=x−10
x^2−8x−20
(f+g)(x)
f(x)=x^2−10x+16
g(x)=x−8
x2^−9x+8
f(x)⋅g(x)
f(x)=x^2+15x+50
g(x)=x+5
x^3+20x^2+125x+250
f(x)÷g(x)
f(x) = x^2−12x+35
g(x) = x−7
x-5
(f÷g)(x)
f(x)=x^2−13x+42
g(x)=x−7
x-6
(f−g)(x)
f(x)=x^2+7x−30
g(x)=x−3
x^2+6x−27
f(x)=x^2−3x−18
g(x)=x+3
x^2−2x−15
(f⋅g)(x)
f(x)=x^2−3x−18
g(x)=x+3
x^3−27x−54
f(x)÷g(x)
f(x)=x^2+3x−10
g(x)=x+5
x-2
(f−g)(x)
f(x)=x^2+11x+24
g(x)=x+3
x^2+10x+21
f(x)−g(x)
f(x)=x^2+8x+15
g(x)=x+5
x^2+7x+10
f(x)+g(x)
(x)=x2+12x+20
g(x)=x+2
x^2+13x+22
f(x)⋅g(x)
f(x)=x^2−4x−60
g(x)=x−10
x^3−14x^2−20x+600
f(x)÷g(x)
f(x)=x^2−7x−18
g(x)=x+2
x−9
f(x)−g(x)
f(x)=x^2+4x−60
g(x)=x+10
x^2+3x−70
f(x)−g(x)
f(x)=x^2+16x+63
g(x)=x+9
x^2+15x+54
(f+g)(x)
f(x)=x^2−7x−18
g(x)=x−9
x^2−6x−27
f(x)⋅g(x)
f(x)=x^2+11x+18
g(x)=x+2
x^3+13x^2+40x+36
f(x)÷g(x)
f(x)=x^2+15x+54
g(x)=x+6
x+9
(f+g)(x)
f(x)=x^2+14x+40
g(x)=x+10
x^2+15x+50
f(x)−g(x)
f(x)=x^2+14x+45
g(x)=x+5
x^2+13x+40
f(x)+g(x)
f(x)=x^2−4x−12
g(x)=x−6
x^2−3x−18
(f⋅g)(x)
f(x)=x^2+5x+6
g(x)=x+3
x^3+8x^2+21x+18
f(x)÷g(x)
f(x)=x^2−9x+20
g(x)=x−4
x-5
f(x)=−3x+2
g(x)=−10x^2−2x−10
30x^3−14x^2+26x−20