Para to Quad
Quad to Para
Tangent Planes
Surface Area
100

True or False

The parametrization of a surface is unique

False

100

Parametrize the part of the cylinder x^2 + y^2 = 16 that lies above the xy-plane and below z = 3.

r(theta, z) = 4 cos theta i + 4 sin theta j + zk

0 <= theta <= 2pi

0 <= z <= 3

100

A surface S is defined by x^2 + z^2 = 25 and 0<= y <=10.

Find an equation of the tangent plane to S at the point (-3, 5, 4).

3x - 4z = -25

100

A smooth surface has a ________ at each point

a) normal plane

b) tangent plane

c) coordinate plane

b) tangent plane

200

Describe or draw the parametric surface using the equation.

r(u,v) = u sin v i + u cos v j + u k 

0 <= u <= 4, 0 <= v <= 2pi

Upside down cone or funnel shape

200

Find the parametrization for the surface

The part of the plane z = 4 - x - 2y that lies in the first octant.

r(u,v) = u+ vj + (4- u - 2v)k

0 <= u <= 4, 0 <= v <= 2- (1/2)u
200

A surface S is defined by x^2 + z^2 = 25 and 0<= y <=10.

Find an equation of the normal line to the tangent plane to S at the point (-3, 5, 4).

Normal line to the tangent plane contains the point (-3, 5, 4) and is parallel to 3i - 4k.

Parametrization of the normal line is r(t) = (-3 + 3t)i + 5j + (4-4t)k.

200

Find the surface area of the part of the surface z = f(x,y) = 2/3 (x^3/2 + y^3/2) that lies above the region R, a rectangle enclosed by the lines x = 0, x = 1, y = 0, and y = 2.

4/15 * (33 - 9sqrt3 - 4sqrt2)

300

Find a rectangular equation for the parametric surface

x(u,v) = u - 5v, y(u,v) = 2u, z(u,v) = -u + v + 1

x + 2y + 5z = 5

300

Find a parametrization for the surface.

The part of the surface z = sin(x^2*y) that lies above the region bounded by the graphs of y = x + 2 and y = x^2

r(u,v) = ui + vj + sin(u^2v)k

-1 <= u <= 2

u^2 <= v <= u + 2

300

Find the surface area of the part of the paraboloid z = f(x,y) = 1- x^2 - y^2 that lies above the xy-plane.

pi/6 * (5sqrt5 - 1)

400

Find the rectangular equation for the parametric surface.

x(u,v) = u cos v, y(u,v) = u sin v, z(u,v) = u

0 <= u <= 2, 0 <= v <= pi

x^2 + y^2 = z^2

0 <= z <= 2

400

Part of the paraboloid z = 9 - x^2 - y^2 lies inside the cylinder (x-1)^2 + y^2 = 1.

a) Parametrize the surface using rectangular coordinates

b) Parametrize the surface using cylindrical coordinates

a) r(u,v) = ui + vj + (9 - u^2 - v^2)k

-sqrt(1 - (u-1)^2) <= v <= sqrt(1 - (u-1)^2), 0 <= u <= 2

b) r(r, theta) = (1 + r cos theta) i + r sin theta j + (8 - r^2 - 2r cos theta)k

0 <= r <= 1, 0 <= theta <= 2pi

400

a) Find the tangent plane to the torus parametrized by r(u,v) = cos u (3 + cos v)i + sin u (3 + cos v)j + sinvk at the point ((3 sqrt(2))/2) , ((3 sqrt(2))/2), 1).

b) Find an equation of the normal line to the tangent plane at the same point.

a) z = 1

b) r(t) = ((3 sqrt(2))/2) i + ((3 sqrt(2))/2) j + (1 + 3t) k

400

Find the surface area of S

S is parametrized by r(u,v)= ucosvi + u^3j + usinvk.

0<= u <= 1, -pi <= v <= pi

(1/6)pi * (3sqrt(10) + ln(3 + sqrt(10)))

500
Use hyperbolic functions to parameterize the sheet where x > 0 in the hyperboloid of two sheets: (x^2/ a^2) - (y^2 / b^2) - (z^2 / c^2) = 1.


r(u,v) = a cosh u i + (b sinh u cos v) j + (c sinh u sin v) k

500

A torus is formed by rotating a circle about another circle.

Parametrize the torus obtained by rotating a circle of radius a > 0 about a circle of radius b > 0.

r(u,v) = (b + a cos u) cos vi + (b + a cos u) sin vj + a sin uk

500

Find an equation of the tangent plane to Dini's surface at the point (pi/3, pi/4).

Dini's surface is defined by the parametric equations:

x = 6 cos u sin v,  y = 6 sin u sin v,  z = 6[cos v + ln(tan v/2)] + u

0.01 <= v <= 1,  0 <= u <= 6pi

(9 - 3(sqrt(6))/2) (x - 3(sqrt(2))/2) + (9 sqrt(3) + 3sqrt(2)/2 ) (y - (3 sqrt(6) / 2)) - 18 {z - (pi/3 + 6[sqrt(2)/2  +ln(tan pi/8)])} = 0

500

Find the surface area S of the helicoid parametrized by r(u,v) = ucos(2v)i + usin(2v)j + vk.

0 <= u <= 1, 0 <= v <= 2pi

sqrt(5)*pi + (1/2)pi * ln(2 + sqrt(5))

M
e
n
u