Add., Subt., Mult., Div.
Factoring Polynomials
Solving Polynomials real answers only
Synthetic Division (Put Answer in form (x-a)(quotient) + remainder)
100

(8x3-6x4+3) - (3x3-3+8x4)

-14x4+5x3+6

100

k3 - 27

(k - 3)(k2 + 3k + 9)

100

x4 - 16 = 0

Hint: factors Difference of 2 squares

x = 2, -2


100

(3k2 - k - 20) / (k + 2)

(k + 2)(3k - 7) - 6

200

-3x(5x+1)(8-2x)

30x3-114x2-24x

200

3m4 - 48n2

3(m2 + 4n)(m2 - 4n)

200

x3 + 512 = 0

x = -8


200

(x3 + 2x2 - 22x - 45) / (x+5)

(x + 5)(x2 - 3x - 7) - 10

300

(1-2n)2-7n(n2-2)

-7n3+4n2+10n+1

300

m6 - 7m4 - 18m2

m2(m +3)(m - 3)(m2 +2)

300

2x3 - 16x2 - 40x = 0

x = -2

x = 0

x = 10

300

(2c3 + 13c2 + 24c + 8) / (c+3)

(c+3))(2c2 + 7c + 3) - 1

400

(-42x10y+ 12x8y- 6x2y) / (6x2y)

-7x8y4+2x6y2-1

400

9y6 + 6y4 +y2

y2(3y2 + 1)2

400

x3 + 3x2 = 24x + 72

x = -3

x = +/- 2sqrt(6)

400

(2x3 - 14x + 10) / (x + 3)

(x+3)(2x2 - 6x + 4) - 2

500

(16a3 - 40a+ 24a) / (8a)

(2a - 3)(a - 1)

500

3p3 + 5p2 - 12p - 20

(p+2)(p-2)(3p+5)

500

4x4 + 35x2 - 9 = 0

Hint: factors like a quadratic

x = +/- 1/2


500

(p4 - 7p2 - 32p - 15) / (p - 4)

(p-4)(p3 + 4p2 + 9p + 4) + 1

M
e
n
u