Polynomial Basics
Polynomial Operations
Word Problems
Applications
Funny Polynomials
100

What is the degree of 3x⁴ + 2x² - x + 7? 

4 (Degree is the highest exponent: 3x⁴ → degree is 4)

100

Simplify: (2x² + 3x - 4) + (x² - 5x + 6).

3x² - 2x + 2 (Combine like terms)

100

Площадь правильного треугольника равна 3x2−5x+2, а высота равна x−1. Найдите периметр этого треугольника.

18x −12

100

The volume of a cube is x³. Write an expression for its surface area.

 

6x² (Surface Area of a Cube)

100

I used to be (x + 2)(x - 2),
but now I’m stuck in therapy, wondering who I really am. Who am I after expanding?


x² - 4 — a classic difference of squares having an existential moment!

200

Найдите многочлен, у которого равны между собой старший коэффициент, свободный член, количество членов и степень многочлена.

2x2 +2

200

Expand: (x - 3)(x + 5).

x² + 2x - 15 (Use FOIL method)

200

The height of a triangle is x + 2, and its base is 2x - 1. Write an expression for the area.

½ (x + 2)(2x - 1) = (2x² + 3x - 2) / 2

200

A farmer fences a rectangular field with a length of 2x + 3 and a width of x + 5. Find the total length of the fence.

6x + 16 (Perimeter = 2L+2W2L + 2W2L+2W)

200

I’m a friendly little polynomial pet.
I always return to my owner — no matter what value of x you plug in, my expression comes out the same!
What kind of polynomial am I?

A constant polynomial — loyal like a dog, always giving you the same value!

300

Write a trinomial with degree 3 and a constant term of 7.

Example: x³ + 2x² + 7

300

Разложите на множители x2 + y2 +z2 −2xy −2yz +2xz

(x −y+z)·(x−y+z)

300

The perimeter of a triangle is 3x² - x + 5. Two of its sides are x² - 2x + 3 and x² + x - 1. Find the third side.

x² - 2x + 3 + x² + x - 1 = 2x² - x + 2 → Third side: x² + 3

300

A box has a length of x + 3, width x - 2, and height x + 1. Write an expression for its volume.

(x + 3)(x - 2)(x + 1) = x³ + 2x² -5x - 6

300

I’m hiding inside every expression, but no one sees me. You can add me, subtract me —
and I still leave everything unchanged.
Who am I?

Zero!

The ultimate undercover agent in math — always there, but never messing things up. 😎

400

How many terms are in the expression x³ + 2x² - 5x + 4x² - 3 after simplifying?

4 terms (After simplifying: x³ + 6x² - 5x - 3 terms)

400

Factor completely: x³ - 3x² - 4x + 12.

(x - 3)(x - 2)(x + 2) (Factor step by step)

400

A square’s area is x² + 8x + 16. What is its side length?

(x + 4)² = x² + 8x + 16 → Side length: x + 4

400

A trapezoid has bases (x + 4) and (x - 2) and height x + 1. Write an expression for its area.

(½) (x + 4 + x - 2)(x + 1) = ½ (2x + 2)(x + 1) = (x² + 2x + 1)

400

В русскоязычной литературе для преобразования многочленов в стан дартный вид используется конкретный глагол. Однако он же в совершенном виде применяется далеко не к каждому многочлену стандартного вида. Назовите старший коэффициент в многочлене, к кото рому применён рассматриваемый глагол в совершенном виде

1

500

Find a polynomial with exactly 3 terms, a leading coefficient of 4, and a constant of -6.

Example: 4x³ + 2x - 6

500

Divide: (x³ + 3x² - x - 3) ÷ (x + 1) using long division.

x² + 2x - 3 (Using polynomial long division)

500

A park is (x² + 5x + 6) m² in area. A new path increases the area to (x² + 7x + 12) m². Find the path’s area.

(x² + 7x + 12) - (x² + 5x + 6) = 2x + 6

500

Объём цилиндрического стержня равен xy − x + y − 1, а площадь всей его поверхности равна x + 1. Считая, что стержень является фигурой вращения прямоугольника вокруг своей стороны, найдите отношение площади этого прямоугольника к его периметру.

y −1

500

You call me by many names — binomial, trinomial, quadratic, cubic…But deep down, we’re all just expressions trying to do one thing.
What is it?

Solve for x — we all just want to find our roots!/ be “Equal zero.” 

M
e
n
u