Classify the polynomial by the degree and number of terms:
2x3
Degree of 3, Monomial
Add the Polynomials
(4x + 9) +(x - 4)
5x + 5
Subtract the polynomials:
(g - 4) - (3g - 6)
-2g + 2
Multiply the Polynomials:
3x2 (2x4)
6x6
Divide the Polynomials:
(4n + 8) / 2
2n + 4
Classify the polynomial by Degree and Number of Terms
5a2 - 6a
Degree of 2, Binomial
Add the polynomials:
(-3a - 2) + (7a + 5)
4a + 3
Subtract the polynomials:
(-5h - 2) - (7h +6)
-12h - 8
Multiply the Polynomials:
(2x)(x + 2)
2x2 + 4x
Divide the Polynomials:
(16x2 - 12x + 8) / 4
4x2 - 3x + 2
Classify the polynomial by Degree and Number of Terms
-6a4 + 10a3
Degree of 4, Binomial
Add the polynomials:
(x2 +3x + 5) + ( -x2 +6x)
9x + 5
Subtract the polynomials:
(-x2 - 5) - (-3x2 -x -8)
2x2 + x +3
Multiply the Polynomials:
(-3m)(-4m - 6)
12m2 + 18m
Divide the Polynomials:
(25s3 + 15s) / 5s
5s2 + 3
Identify the coefficients in this polynomial
-10k3 + k +1
-10, 1
Add the polynomials:
(t2 + 3t3 -3) + (2t2 +7t -2t3)
t3 +3t2 +7t -3
Subtract the Polynomials:
(k2 + 6k3 -4) - (5k3 + 7k -3k2)
k3 + 4k2 -7k -4
Multiply the Polynomials:
(4n - 1)(5)
20n - 5
Divide the Polynomials:
(8h6 - 32h5 +16h4) / -8h4
-h2 + 4h - 2
What is the degree of a constant?
Zero
Add the polynomials:
(-1 + x2 + 2x) + (1 -2x + 2x2)
3x2
Subtract the Polynomials:
(2x - 3x) - (x2 -2x + 4)
-x2 + x - 4
Multiply the Polynomials:
(6d)(d2 - 4d + 1)
6d3 - 24d2 +6d
Divide the Polynomials:
(3x4y2 + 6x3y - 9x2y) / 3x2y
x2y + 2x - 3