Standard Form/Classifying
Adding Polynomials
Subtracting Polynomials
Multiplying Polynomials
Dividing Polynomials
100

Classify the polynomial by the degree and number of terms:

2x3

Degree of 3, Monomial

100

Add the Polynomials

(4x + 9) +(x - 4)

5x + 5

100

Subtract the polynomials:

(g - 4) - (3g - 6)

-2g + 2

100

Multiply the Polynomials:

3x2 (2x4)

6x6

100

Divide the Polynomials:

(4n + 8) / 2

2n + 4

200

Classify the polynomial by Degree and Number of Terms

5a2 - 6a

Degree of 2, Binomial

200

Add the polynomials:

(-3a - 2) + (7a + 5)

4a + 3

200

Subtract the polynomials:

(-5h - 2) - (7h +6)

-12h - 8

200

Multiply the Polynomials:

(2x)(x + 2)

2x2 + 4x

200

Divide the Polynomials:

(16x2 - 12x + 8) / 4

4x2 - 3x + 2

300

Classify the polynomial by Degree and Number of Terms

-6a4 + 10a3

Degree of 4, Binomial

300

Add the polynomials:

(x2 +3x + 5) + ( -x2 +6x)

9x + 5

300

Subtract the polynomials:

(-x2 - 5) - (-3x2 -x -8)

2x2 + x +3

300

Multiply the Polynomials:

(-3m)(-4m - 6)

12m2 + 18m

300

Divide the Polynomials:

(25s3 + 15s) / 5s

5s2  + 3

400

Identify the coefficients in this polynomial

-10k3 + k +1

-10, 1

400

Add the polynomials:

(t2 + 3t3 -3) + (2t2 +7t -2t3

t3 +3t2 +7t -3

400

Subtract the Polynomials:

(k2 + 6k3 -4) - (5k3 + 7k -3k2)

k3 + 4k2 -7k -4

400

Multiply the Polynomials:

(4n - 1)(5)

20n - 5 

400

Divide the Polynomials:

(8h6 - 32h5 +16h4) / -8h4

-h2 + 4h - 2

500

What is the degree of a constant? 

Zero

500

Add the polynomials:

(-1 + x2 + 2x) + (1 -2x + 2x2)

3x2

500

Subtract the Polynomials:

(2x - 3x) - (x2 -2x + 4)

-x2 + x - 4

500

Multiply the Polynomials:

(6d)(d2 - 4d + 1)

6d3 - 24d2 +6d

500

Divide the Polynomials:

(3x4y2 + 6x3y - 9x2y) / 3x2y

x2y + 2x - 3

M
e
n
u