Degree of Polynomials
Adding Polynomials
Subtracting Polynomials
Multiplying Binomials
Distributive Principle
100

4y + 7

What is a first degree polynomial

100

(3x+5) + (4x+1)

7x + 6

100

(9a-10) - (4a+2) 

5a-12

100
(x+2)(x+3)
x2 + 3x + 2x + 6 x2+5x+6
100

4(3x + 4)

12x + 16

200

3x

What is a first degree polynomial

200

(6x-7) + (4x+5)

10x-2

200

(5x+4)-(-6x-8)

11x+12

200
(x-7)(x+2)
x2 + 2x - 7x - 14 x2-5x-14
200
2(5x + 6)
10x + 12
300

4x2 + 5x + 6

What is a second degree polynomial

300

(5x-7) + (8x-2)

13x-5

300

(6x2 + 2x + 7) - (3x2  - 4x + 5) 

3x2+6x+2

300
(2x+4)(x-8)
2x2 - 16x + 4x - 32 2x2-12x-32
300
6(x+12)
6x+72
400

7

What is a zero degree polynomial

400

(5x-3) + (4x+7) + (2x-6)

11x-2

400

(5m2 - 2m + 3) - (4m - 10) 

5m- 6m + 13

400
(x-4)2
(x-4)(x-4) x2 - 4x - 4x + 16 x2-8x+16
400
4(3x-y+5)
12x-4y+20
500

-15

What is a zero degree polynomial

500

(6x-8) + (6x+8)

12x

500

(10x3 - 3x2 + 5x -12) - (6x3 - 4x + 11)

4x- 3x+ 9x - 23

500
DAILY DOUBLE (this one is HARD!) Use the 1)Addition Principle, 2)Factor and use the 3)Zero Product Rule to solve x^2-10x+5=29
1) x2 - 10x + 5 = 29 -29 -29 x2 - 10x - 24 = 0 2) (x - 12) (x + 2) = 0 3) x-12 = 0 OR x+2=0 x=12 x=-2
500
-3(2x-6)
-6x+18
M
e
n
u