Classifying Polynomials
Adding Polynomials
Subtracting Polynomials
Multiplying Polynomials
Misc.
100

3a3

cubic monomial

100

(1 - 2k3) + (5k3 + 5)

3k3 + 6

100

(3+5v4) - (3v4 - 4)

2v4 + 7

100

3(8n + 7)

24n + 21

100

Write the polynomial in standard form:

8x2 - 2x3 - 9 - 7x

-2x3 + 8x2 - 7x - 9

200

-4

constant monomial

200

(2x + 4x2) + (x - 4x2)

3x

200
(1 + 5x3) - (x2 - 4)

5x3 - x2 + 5

200

6m(3m2 - 5m - 7)

18m3 - 30m2 - 42m

200

Write the polynomial in standard form. Then, classify the polynomial by degree and number of terms:

6 + m

m + 6; linear binomial
300

9k4 - 2k3

quartic binomial (or 4th degree binomial)

300

(-2x2 +12x3 + 3) + (-9x2 - 8 + 6x3)

18x3 - 11x2 - 5

300

(14b5 - b4 - 9) - (-8b5 + 14 - 9b3)

22b5 - b4 + 9b3 - 23

300

(7n + 6)(7n + 4)

49n2 + 70n + 24

300

Write the polynomial in standard form. Then, identify the leading coefficient:

-7 + n4 + 4n2 + 5n

n4 + 4n2 + 5n - 7; 1

400

k2 - 7k - 5k3 - 10

cubic polynomial

400

(10n - 4n4 - 6n3) + (-6n4 - 11n5 + 4n)

-11n5 - 10n4 - 6n3 + 14n

400

(6n3 - 4n5 - 3n4) - (-3n5 - 11n3 - 9n2)

-n5 - 3n4 + 17n3 + 9n2

400

(8b - 8)(5b - 7)

40b2 - 96b + 56

400

Write the polynomial in standard form. Then, identify the degree of the polynomial:

6 + 7x3 - 3x2y2

-3x2y2 + 7x3 + 6; degree 4

500

4v4 - 2v7

7th degree binomial

500

(-4x - 9y4) + (9x + 2xy - 13y4) + (12xy - 12x2)

-22y4 + 14xy - 12x2 + 5x

500

(-14 - 2n3 + 12n2) - (-10 + 11n3 - 13n2)

-13n3 + 25n2 - 4

500

(n + 5)(7n2 - 2n + 5)

7n3 + 33n2 - 5n + 25

500

Write the polynomial in simplest form. Then, state the degree and number of terms. Finally, classify the polynomial by degree and number of terms.

4n2 - n4 + 5

-n4 + 4n2 + 5; degree 4, 3 terms; quartic (or 4th degree) trinomial

M
e
n
u