solve quadratics-easy
Solving Special cases
Solving using Theorem
Mixed Review
Write Equation Standard
100

x2+2x+1=0

x=-1    x=-1

100

x2 - 16 = 0 

x = 4    x = -4



100

x3 - 2x2 - 5x + 6 = 0

x = 1    x = -2   x = 3
100

x+6x + 9 = 0

x= -3    x = -3

100

-1, 2 , 4 x3-5x2+2x+8

x3-5x2+2x+8

200

x2-9x-10=0

x= 10    x= -1

200

2x2 - 50 = 0

x = 5  x = -5

200

x3 - 6x2 - 7x + 60 = 0

x = 5   x = -3   x = 4

200

x+ 5x + 3 = 0

x = (-5 + sqrt 13) / 2       x = (-5 - sqrt 13) / 2 

200

-1, -5, and 1/5

5x3 +29x2+19x-5

300

2x2 +5x + 2=0

x= -1/2     x=-2

300

x3 + x2 -4x - 4 = 0 

x= 2    x = -2    x = -1

300

x3 + 2x2 - 11x - 12 = 0 

x = -1   x = -2  x = 2

300

x3 - 27 = 0

x = 3  x = (-3 + 3i sqrt 3) / 2                                  x = (-3 - 3i sqrt 3) / 2

300

Real roots: 1, 1, and 1/4

4x3-9x3+6x-1.

400

12x2 + 17x -7 = 0

x = 1/3   x = -7/4

400

7x3 +x2 - 14x - 2 = 0 

x = sqrt 2      x =  -sqrt 2     x = -1/7

400

5x+ 29x+ 19x - 5

x = 1/5  x = -5   x = -1

400

x- x3 + 9x-9x = 0 

x = 0   x = 1  x = 3i   x = -3i

400

Real roots: -1, -1, 5, 1/3

3x4-10x3-24x2-6x+5.


500

61x2 - 129x -42 = 0

x = 7/3     x = -2/7


500

x3 - 8 = 0

x = 2    x = -1 + i sqrt 3    x = -1 - i sqrt 3

500

2x3 + 9x+ 19x + 15

x = -3/2    x = (-3 + i sqrt 31) / 2                          x = (-3 - i sqrt 31) / 2

500

x4 + 4x+ 16 = 0 

x = -2   x = -2   x = -2   x = 2

500

Real roots: 1, 1, 7, and 1/5

5x4-46x3+84x2-50x+7

M
e
n
u