Converting Log and Exponential Form
Solving Log Equations with Properties
Expanding/Condensing Logarithms
Solving Exponential Equations with Logs
Logarithm
Transformations
100

Convert to Exponential Form:


log_2(8)=x


2^x=8

100

Solve for x:


log_3(x-3)=log_3(55)

x=58

100

Condense the Logarithms:


log_3(2x)-log_3(5y)


log_3((2x)/(5y))

100

Solve using Logarithms:


6^x=90

x=2.51

100

State the Transformations:

log(x)-9

-9: Down 9

200

Convert to Logarithmic Form:


4^y=x


log_4(x)=y


200

Solve for x:


log_5(x+6)=log_5(3x)

x=3

200

Completely Expand the Logarithm:


log((2x)/y)

log(2)+log(x)-log(y)

200

Solve Using Logarithms:

3^(7x)=108

x=0.61

200

State the Transformations:

log(x+3)

x+3: translates left

300

Convert to Exponential Form:


log_(x-1)(4)=2y

(x-1)^(2y)=4


300

Solve for x:


2ln(2)+ln(x)=ln(x+12)

x=4

300

Condense the Logarithms:


2ln(3)-2ln(x)+4ln(y)

ln((9y^4)/x^2)

300

Solve by Converting:


log_4(x)=5

x=1024

300

State the Transformations:

1/3 log(x-2)

1/3: vertical stretch

x-2: translates right 2

400

Convert to Exponential Form:


2log_(3x)(5-z)=4y


(3x)^(2y)=5-z

or

(3x)^(4y)=(5-z)^2

400

Solve for x:


3log(4)-log(x)=log(2)

x=32

400

Condense the Logarithms:

3log(x)-4log(2)-5log(z)+3log(3)

log((27x^3)/(16z^5))

400

Solve using Logarithms:


e^(7x)=60

x=0.58

400

State the Transformations:


2log(x-3)

2: Vertical Stretch by 2

x-3: Right 3

500

Convert to Logarithmic Form:


e^(x+4)=2y-7


ln(2y-7)=x+4

500

Solve for x:


2log(x)=log(3x+4)

x=4

-1 is an extraneous solution

500

Completely Expand the Logarithm:


ln((3x^6y^7)/(7z^5))

ln(3)+6ln(x)+7ln(y)-ln(7)-5ln(z)

500

Solve using Logarithms:


4^(x-2)=100

x=5.32

500

State the transformations:

-ln(x-4)+1


-: reflection over the x-axis

x-4: right 4

+1: up 1

M
e
n
u