Functions
Polynomials
Rational Functions
Exponents
Logarithms
100
If f(x) = 10x - 3, what is f(u+v)?
f(u+v) = 10(u+v) - 3 = 10u + 10v - 3
100
Find the vertex of h(x) = x^2 + 4x + 8.
(-2,4)
100
Where are the asymptotes of r(x) = (x+2) / (x-3)?
x = 3
100
Solve 2^x = 16.
x = 4
100
Solve ln x = 4.
x = e^4
200
If g(x) = x^2 + 4x + 3, what is g(3j)?
g(3j) = (3j)^2 + 4(3j) + 3 = 9j^2 + 12j + 3
200
Place h(x) = x^2 + 2x - 3 in to standard form.
h(x) = (x+1)^2 - 4
200
What is the horizontal asymptote of r(x) = (x^3 - x + 1) / (x^4 + 2x^2 + 4)?
y = 0
200
Solve e^x = 6.
x = ln 6
200
Solve log_2 x = 5.
x = 32
300
If h(x) = (x+3) / (x^2 - x + 1), what is h(-kn)?
h(-kn) = (-kn + 3) / ((kn)^2 + kn + 1)
300
Place g(x) = 3x^2 - 12x + 13 in to standard form.
g(x) = 3(x-2)^2 + 1
300
Where are the vertical asymptotes of r(x) = (x^2 + x - 2) / (x^3 + 2x^2 - x - 2)?
x = 1, x = -1, x = -2
300
Solve 4^(3x+2) = 4^(2x).
x = -2
300
Solve ln (x+3) = ln (2x+1).
x = 2
400
What is the difference quotient of f(x) = 2x^2 - 3?
(f(x+h) - f(x)) / h = 4x + h
400
Factor x^4 - 2x^3 + 2x - 1 completely.
(x+1)(x-1)(x-1)(x-1) = (x+1)(x-1)^3
400
What is the horizontal asymptote of r(x) = (x^4 - 3x^3 + 3x - 6) / (3x^4 + x^3 - x^2 + 2)?
y = 1/3
400
Solve e^(3x) = 3.
x = (ln 3) / 3
400
Solve 3 log_3 (x+3) = 9.
x = 24
500
Determine whether f(x) = x^4 + 3x^2 + 1 is even, odd, or neither.
Neither.
500
Find all the zeros (real and complex) of x^4 + x^3 - x^2 + x - 2.
x = -2, 1, i, -i
500
Let r(x) = ((x+1)(x+2)(x+3)(x-4)(x-5)) / ((x-1)(x-2)(x-3)(x+4)(x+5)). Where are the x-intercepts and vertical asymptotes of r?
x-intercepts: x = -1, -2, -3, 4, 5 vertical asymptotes: x = 1, 2, 3, -4, -5
500
4 ( 2^(4x) ) = 12
x = (ln 3) / (4 ln 2)
500
Solve ln (x+1) + ln (x-3) = ln (x-5).
x = 1, 2
M
e
n
u