Zeros
Inequalities
Exponents & Logarithms
Application Problems
Matrices
100

Determine the zeros of the function:  y = 2x2 + 5x - 3

x = 1/2

x = -3

100

Solve:    -x+ 4 is greater than zero

( -2, 2)

100

Solve:  1/64 = 2x-1

x = -5

100

The table shows the time t in seconds required for a car to attain a speed of miles per hour from a standing start.

Speed, s = 30, 40, 50, 60, 70, 80, 90

Time, t = 3.4, 5.0, 7.0, 9.3, 12.0, 15.8, 20.0

Determine the seconds required to hit 65 mph.

t = 10.22 secs.

100

Solve:   2x + 3y - 4z = -5

            -x - 2y + z = 1

             -4x + y + 2z = -9

(3, -1, 2)

200

Determine the possibilities for zeros:

y = 2x4 - 3x3 + x2 - x + 10

possibilities:  +/- 2, +/- 1, +/-5, +/-10, +/-1/2, +/-5/2

200

Approximate where f(x) = g(x)

f(x) = 2x - 1           g(x) = x2 - 8

x = 3.828

x = -1.828

200

Solve.  Give an exact answer.

52x-1 = 2-3x+4


x = (ln 16 + ln 5) / (ln 25 + ln 8)

200

Use an augmented matrix to solve the systems of linear equations:

3x - 2y + z = 15

-x + y + 2z = -10

x - y - 4z = 14

(5, -1, 2)

200

Solve for X.     2X - A = B

A = [ 1  2  -1                  B = [ 5  -6   1

         3  1  -2                          -2  3  -4

        -1  4  -5]                        -3  8  -9]

X = [ 3   -2   0

        1    2   -3

       -2    6   -7]

300

Determine the zeros:  y = 4x3 - 5x

x = 0, x = +/- sqrt 5/2

300

Determine where the function is increasing, decreasing, or constant.

y = (1/2)x3 - 5x

Increasing:  (-infinity, -1.826) U (1.826, infinity)

Decreasing:  (-1.826, 1.826)

300

Solve:  log2 x + log2(x + 4) = 5

x = 4

300

How many years will it take to double an investment of $5000 with an interest rate of 6.5% compounded monthly?

10.7 years

300

Multiply A times B.

A = [ 2  4  -3]       B = [ -6  0  2

                                     5   1  -4

                                    -2   -1  8]

AB = [14  7  -36]

400

Approximate where f(x) is greater than or equal to g(x).

f(x) = x2 - 5x + 6       g(x) = 2x - 3

(- infinity, 1.697]

[ 5.303 , infinity)

400

Where does f(x) exceed g(x)?

f(x) = 3x2 - 5x - 9

g(x) = x - 1

(-infinity, -0.915) U (2.915, infinity)

400

If x is a real number and resides between 0 and 1, compare:

A.  1/x2      B.  1/x3

B is greater than A.

400

Margaret ordered 200 flowers for the church for Mother's Day.  In the mix were carnations at $1.50, roses for $5.75, and daisies for $2.60 each.  The total rang up at $589.50.  She did get 20 fewer roses than daisies.

How many of each flower did she order?

Carnations = 80

Roses = 50

Daisies = 70

400

Multiply C x D

C = [-3  0  2                D = [-2  6

        1   3  -2                       3  -4

        5  -1   4]                      2   1]

  CD = [10  -16  

             3    -8

            -5    38]

500

Graph the following function, include zeros, intercept(s), asymptotes.

y = [(x-3)(x+2)(x+5)]/[(x+1)(x-2)]

[Graph]

500

Where does g(x) exceed f(x)?

f(x) = 2x - 3

g(x) = x3 - 4x2 + 5

(-1.414, 1.414) U (4, infinity)

500

Solve.  Give an exact answer.

log224 = x


x = 3 + log23

500

Max had $24,500 to invest in three different accounts.  The first paid 4% interest, the second paid 5.5% interest, and the third paid 6%.  At the end of the year, he had made $1300.  If the amount of money in the lowest paying account was four times the amount in the middle account, how much money was in each account?

$8000 in the 4% account

$2000 in the 5.5% account

$14,500 in the 6% account

500

Find the equation of the parabola y = ax2 + bx + c passing through the points (-3, 13), (0, -4), 

and (3, -1).

y = 10/9x2 - 7/3x + 4

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500