Functions
Analyzing Graphs and extrema
Continuity and end behavior
Transformations and inverse functions
Operations and Composition of functions
100

Does the table represent a function?

Yes

100

Find the domain and range

D= [-8,8] R=[0,8]

100

Is the function continuous at the the given value x=4? 

f(x)=x^2-3x

yes continuous, 

f(x)=4

100

Identify the parent function and the transformations

g(x)= sqrt(x-3)+2

f(x)=sqrtx

up two and right three 

100

Find 

(f*g)(x) and (f/g)(x)

f(x)=4x^2-1

g(x)=5x-1

(f*g)(x)=20x^3-4x^2-5x+1

(f/g)(x)=(4x^2-1)/(5x-1)

200

Find f(5) for 

f(x)=x^2-3x+4

14

200

Find Domain and Range

D=(-oo,oo) R=(-oo,-3)

200

Is the function continuous? if not, state the type of discontinuity and where it is discontinuous.

f(x)=x/(x+7)

infinite discontinuity at x=-7

200

Identify the parent function and the transformations

g(x)=-(x-6)^2-5

f(x)=x^2

down 5 right 6 reflection over x

200

find 

(f@g)(x)

f(x)=1/(x-3)

g(x)=2x-6

(f@g)(x)=1/(2x-9

300

Find f(-3x) for 

f(x)=x^2-3x+4

9x^2+9x+4

300

Find y int. and zeros of 

f(x)=x^2-6x-27

y-int: -27

zeros: -3, 9

300

Is the function continuous? if not, state the type of discontinuity and where it is discontinuous.

f(x)=(x^2+2x-8)/(x-2)

Point discontinuity at x=2

300

Determine if a inverse function exists and if so what it would be for 

f(x)=-(3)/(x+6)

Yes, 

f^-1(x)=(-3)/x-6

300

Find 

(f@g)(x)

f(x)=4x+11

g(x)=2x^-8

(f@g)(x)=8x^2-43

400

State the domain of 

g(x)=sqrt(6x-3)

x>=1/2

400

Use the graph to estimate the increasing/decreasing intervals to the nearest .5 unit and classify extrema 

increasing: 

(-oo, -0.5) & (0.5, oo)

decreasing: 

(-0.5, 0.5)

Rel max: (-0.5, 3.5) Rel min (0.5, 2.5) 

400

Describe the end behavior 

lim_(x->oo)f(x)->-oo

lim_(x->-oo)f(x)->oo

400

Find the inverse function and state any restrictions on the domain 

f(x)=x^3-2

f^-1(x)=root(3)(x+2)

400

Find 

(f@g)(x), (g@f)(x), and (f@g)(2)

f(x)=x^2+2x+8

g(x)=x-5

(f@g)(x)=x^2-8x-23

(g@f)(x)=x^2+2x+3

(f@g)(2)=11

500

Find domain of 

h(x)=x^2/(x(x^2-4)

x!=0, +-2

500

Find the average rate of change of the function on the interval [0,2]

f(x)=-x^3+3x+1

-1

500

describe the end behavior

lim_(x->oo)f(x)->-oo

lim_(x->-oo)f(x)->-oo

500

Find the inverse function and state any restrictions on the domain 

f(x)=x/(x+2)

f^-1(x)=(-2x)/(x-1)

x!=1

500

find two functions such that 

h(x)=(f@g)(x)

h(x)=sqrt(x^3-4)

f(x)=sqrtx

g(x)=x^3-4

M
e
n
u