Derivatives
Limits
Tangent and Normal Lines
Extreme Values and Additional Info about Derivatives
Implicit Differentiation
100

Evaluate f'(1) when:

f(x) = 6x5 - x2 + 8lnx + 1

Answer: f'(1) = 36

f'(x) = 30x4 - 2x + 8/x  -->  f'(1) = 30 - 2 + 8 = 36

100

Evaluate: lim f(x) -> pi/6

f(x) = cos(x + pi/6)

Answer: 1/2

cos( pi/6 + pi/6 ) = cos(2*pi/6) = cos(pi/3) = 1/2

100

What are the formulas for finding the tangent line and normal line?

Tangent: y = f'(c)(x - c) + f(c)

Normal: y = (-1/f'(c))(x - c) + f(c)

100

Find the absolute max value for:

y = 3sinx on [0 , pi]

Answer: Abs. Max = 3

Endpoints: (0,0) and (pi,0)

y' = 3cosx --> 0 = 3cosx --> xc = pi/2 --> (pi/2 , 3)

100

Evaluate dy/dx at (2,2):

x2 + y2 = 8

Answer: -1

dy/dx = -x/y --> -2/2 = -1

200

Find dy/dx of 2x + ln(5x) - tan(x2)

Remember that d/dx(ax) = lna*ax

ln2*2x + 1/x - 2xsec2(x2)

200

Evaluate limit as x approaches 9:

(x2 + 2x - 35)/(x2 - 2x - 63)

Answer: DNE

[(x - 5)(x + 7)]/[(x + 7)(x - 9)] = (x - 5)/(x - 9)

(9 - 5)/(9 - 9) = 4/0 = DNE

200

Find the tangent line that goes through (1,4) on the function f(x) = 3x2 + x.

Answer: y = 7x - 3

c = 1 ; f(c) = 4 ; f'(c) = 7

200

Find the absolute min value for:

y = 2 - sinx on [0 , 3pi/2]

Answer: Abs. Min = 1

Endpoints: (0,2) and (3pi/2,3)

y' = -cosx --> 0 = -cosx --> xc = pi/2 --> (pi/2 , 1)

200

Evaluate (f-1)'(42) given the function:

f(x) = x5 + 10

Answer: 1/80

Inverse: x = y5 + 10  --> dy/dx = 1/(5y4)

y = 2  --> dy/dx = 1/(5(2)4) = 1/(5*16) = 1/80

300

Evaluate f'(0) given the function:

f(x) = (8x + 2)3

Answer: 96

f'(x) = 3(8x + 2)2(8)  -->  f'(x) = 24(8x + 2)2

f'(0) = 24(2)2  -->  f'(0) = 24 x 4 = 96

300

Identify the discontinuity for:

f(x) = (3x)/(x2 - 10x + 25)

One Essential Discontinuity  (asymptote)

300

Find the slope of the normal line at x = 2 of the function f(x) = x2 - x.

Answer: -1/3

f'(x) = 2x - 1  -> f'(2) = 3 = f'(c) -> -1/f'(c) = -1/3

300

True or False:

If f'(x) > 0 for all real numbers, then f(x) is a one-to-one function.

Answer: True

If the derivative is always negative, then the function is always decreasing and never increases. It passes the vertical and horizontal line test.

300

Find dy/dx:

2x2 - 4y2 = y

Answer: dy/dx = (4x)/(1 + 8y)

4x - 8y*(dy/dx) = 1*(dy/dx) 

4x = (dy/dx)(1 + 8y)  --> (4x)/(1 + 8y)

400

Find dy/dx: y = 5x2*sin3(x)

dy/dx = 10xsin3(x) + 15x2sin2(x)cos(x)

400

Evaluate: lim h -> 0  [ (root(64 + h) - 8) / h ]

Answer: 1/16

Conjugate: root(64 + h) + 8

lim h -> 0 (1)/(root(64+8) + 8) = (1)/(8+8) = 1/16

400

Find the tangent line that goes through (-2,-4) on the function f(x) = (2/x) - x2

Answer: y = (7/2)x + 3

f'(x) = -2/x2 - 2x  --> f'(-2) = (-1/2) + 4 = 7/2

y = (7/2)(x + 2) - 4  -->  y = (7/2)x + 3

400

Find the critical number(xc) for the function:

y = 3x - 17lnx

Answer: xc  = 17/3

y' = 3 - 17/x --> 0 = 3 - 17/x  -->  x = 17/3

400

Evaluate (f-1)'(10) given the function:

f(x) = x3 + x

Answer: 1/13

Inverse: x = y3 + y  and y = 2

1 = dy/dx(3y2 + 1) --> dy/dx = (1)/(3y2 + 1)

500

Find dy/dx of  y= cos3(1 - 2x2)

dy/dx = 12xcos2(1 - 2x2)sin(1 - 2x2)

500

At what x-values is the function not differentiable?

f(x) = |x - 2|/(x2 - 1)  

Asymptotes: x = -1 ; x = 1

Corner: x = 2

500

Find the slope of the normal line at x = 3 of the function f(x) =(x2 - 1)/(x2 + 1).

Answer: -25/3

f'(x) = (4x)/((x2 + 1)2)  (quotient rule)

c = 3 --> f'(c) = 3/25  -->  -1/f'(c) = -25/3

500

Evaluate f''(pi/6) when given the function:

f(x) = sin2(x)

Answer: 1 

f'(x) = 2sinxcosx   (now need to do product rule)

f''(x) = 2cos2x - 2sin2x  --> f''(pi/6) = 3/2 - 1/2 = 1

500

Find dy/dx at (3,1)

y2 + xy = 4

Answer: -1/5

2y*(dy/dx) + y + x*(dy/dx) = 0

dy/dx = (-y)/(2y + x)  --> dy/dx(3,1) = -1/5

M
e
n
u