SIMPLIFY
PRACTICAL PROBLEMS
FACTORING
SOLVE
RANDOM
100

Simplify (x-3)(2x+5)

2x2 - x - 15

100

The function f(t) = -5t+20t + 60 models the approximate height of an object t seconds after it is launched. How many seconds does it take the object to hit the ground?

9 seconds

100

Factor 60x + 43x + 2

(20x + 1)(3x + 2)

100

Solve 27x + 21x + 3 = -1

No Real Solutions

100

How many zeros does this function have? 

f(x) = 2x2 + 8x + 1

None

200
Simplify 2(x-1)(4x-1)
8x2 - 10x + 2
200

State whether the graph opens up or down: x - 14x + 1990

The graph opens up because the coefficient of xis greater than 0. 

200

Factor x + 20x + 100

(x + 10)2

200

Solve 3 = x + 2x


x = 1 or -3

200

Find the vertex of y = x2 + 8x +1

Vertex = (-4,-15)

300
Simplify (3k - 9) (2k - 8)
6k2 - 42k + 72
300

Your nephew is standing on his deck, which is 4 feet off the ground. He tosses his toy up into the air. The equation h = -2t2 + 7t + 4 models the toy's height, h, from the ground at t seconds after he threw it. How high is the toy after 1 second?

DAILY DOUBLE:

9 feet

300

Factor 9x - 196

(3x -14)(3x + 14)

300

Solve 6n - 11 = 0 (Decimals are fine)

x = -0.738549 or 0.738549

300

Solve 4x2 +3x =-1

No Real Solution......cannot take the square root of a negative number

400
Simplify 8(x+2)2 + 6x
8x2+38x+32
400

A lizard is jumping across the water in search of food. The equation h = -12t2 + 6t models the lizard's height in feet above the water t seconds after he jumps. How long after jumping is he back on the water?

0.5 seconds


400

Factor 14x - 32x + 8

2(7x -2)(x-2)

400

Solve 2m + 2m -12 = 0

m=-3 or 2

400

Find the maximum of y=-6x2 +3x + 5

(0.25,5.375)

500
Simplify 3(x-2)(x+2) - 4(x+1)2
-x2 - 8x - 16
500

An object in launched directly upward at 64 feet per second (ft/s) from a platform 80 feet high. Its height is represented by the equation
s(t) = –16t2 + 64t + 80.
What will be the object's maximum height?

144 ft

500

Factor x + 2x - 2

Prime

500

Solve 3x= -4x + 2

Must be in simplest radical form

(-2 + sqrt10)/3

(-2 - sqrt10)/3

500

The profit from selling local ballet tickets depends on the ticket price.  Using past receipts, we find that the profit can be modeled by the function
p= -15x2 +600x +60 , where x is the price of each ticket.  What is the maximum profit you can make from selling tickets?

$6060

M
e
n
u