Solve by factoring or using quadratic formula
Complete the Square and State the Transformations
List the Key Features
What is the Equation of the graph
Value of Discriminant and number of solutions?
100

n2+8n= -15

-5, -3

100

p2 + 14p - 38

(p + 7)2 + 11


Shift 7 units left and 11 units up

100

Vertex, AOS, Zeroes, Y-int, Min/Max

y = x2

Vertex = (0,0)

AOS x = 0

Zeroes = 0

Y-int = 0

Min = 0

100

Vertex at origin

Passes through the point (1, -8)

y = -8x2

100

6p2-2p-3=0

76

2 roots

200

5r- 44r + 120 = -30 + 11r

6, 5

200

-a2 - 20a - 51

-(a + 10)+ 49


Reflect across the x - axis

Shift 10 units left and 49 units up

200

Vertex, AOS, Zeroes, Y-int, Min/Max

y = (x-5)+ 3

Vertex = (5,3)

AOS x = 5

Zeroes = none

Y-int = 28

Min = 3

200

Vertex (8,-1)

Y-intercept -17

y = -0.25(x - 8)2 - 1

200

r2 + 5r + 2 = 0

17

2 roots

300

7k2 - 6k = 0

6/7, 0

300

2a- 8a + 6

2(a - 2)- 2

Vertically strectched by a factor of 2

Shift 2 units right and 2 units down


300

Vertex, AOS, Zeroes, Y-int, Min/Max

y = -(x+3)+ 9

Vertex = (-3,9)

AOS x = -3

Zeroes = -6, 0

Y-int = 0

Max = 9

300

Roots at -4, 7

y intercept 56

y = -2(x+4)(x-7)

300

-2x2 - 8x - 14 = -6

0

one root

400

35k2 - 22k + 7 = 4

1/5, 3/7

400

4n2 + 4n + 36

4 (n + 0.5)2 + 35

Vertically stretched by a factor of 4

Shift 0.5 units left and 35 units up

400

Vertex, AOS, Zeroes, Y-int, Min/Max

y = x2 + 6x + 8

Vertex = (-3,-1)

AOS x = -3

Zeroes = -4, -2

Y-int = 8

Min = -1

400

Roots 2, 3

Y intercept -2

y = 1/3(x-2)(x+3)

400

9n2 - 3n - 8 = -10

-63

no real roots

500

8x2 + 21 = -59x

-3/8, -7

500

-6x2 - 12x - 60

- 6(x + 1)2 - 54

Vertically stretched by a factor of 6

Reflect in the x -axis

Shift 1 unit left and 54 units down


500

Vertex, AOS, Zeroes, Y-int, Min/Max

y = -3x2 + 6x + 8

Vertex = (1,11)

AOS x = 1

Zeroes = -0.915, 2.915

Y-int = 8

Max = 11

500

Vertex (4, -16.2)

Roots -2, 10

y = 0.45 (x-10)(x+2)

500

9m2 + 6m +6 =5

0

one solution

M
e
n
u