Factoring a=1
Factoring Special Case
GCF
Solving
Characteristics
of a Quadratic
100

x2 + 4x + 3

(x+3)(x+1)

100

a- 9

(a-3)(a+3)

100

2x- 16x

2x ( x2 - 8)

100

Solve the following algebraically. 

x2 - 12x + 35 

(x-7)(x-5) 

x= 7 x= 5 

100

State the vertex of x2 + 4x - 5 

(-2,-9)

200

x2+ 8x - 20 

(x+10)(x-2)

200

4x2 - 81

(2x-9)(2x+9)

200

3x- 18x2 - 6x

3x(x3 - 6x - 2) 

200

Solve the following by factoring. 

x2 + 3x - 10 

(x+5)(x-2)

x=-5  x=2 

200

State the axis of symmetry for y =x2 + 8x

x = -4 

300

x- 12x + 35

(x-5)(x-7)

300

16x- 25y2

(4x- 5y)(4x+ 5y)

300

4x2 - 16x + 16

4(x2 - 4x + 4)

300

Solve a2-9a-10 algebraically. 

(a-10)(a+1) 

a =10  a=-1

300

State the roots to x- 11x + 18

the roots are 2 and 9

400

b2 - 17b + 72

(b-8)(b-9)

400

9x6 - 64y4

(3x3-8y2)(3y3+8y2)

400

6x3 + 18x2 - 24x

6x(x2 + 3x - 4)

400

Solve x2 -11x + 24 

(x-8)(x-3)

x=8  x=3

400

Solve for the axis of symmetry algebraically. 

y = 3x2 + 12x + 5 

x = -b/2a 

x = - (12) / 2(3) 

x = -2

500

n2 - 2n - 63

(n-9)(n+7)

500

4x2y8 - 49z10

(2xy- 7z5)(2xy4 + 7z5)

500

15x5y- 10x3y2 + 5x2

5x2y(3x3y2 - 2xy + 1) 

500

algebraically solve k2 - 6k - 40 

(k-10)(k+4)

k=10 k=-4

500

Solve the axis of symmetry algebraically for

 y = -2x2 - 12x -3 

x = -b/2a 

x = -(-12)/2(-2) 

x = -3 

M
e
n
u