Identify the Vertex:
y=(x+3)2-6
(-3,-6)
Factor:
y=x2-4x+4
y=(x-2)(x-2)
or
y=(x-2)2
Solve:
(x+1)(x-5)=0
x=-1
x=5
Add:
(5+6i)+(2-7i)
7-i
Determine the Discriminant:
-4x2-3x+3=-6
153
Identify the Vertex:
y=x2-2x-5
(1,6)
Factor by Completing the Square:
x2+6x=-2
(x+3)2=7
Solve:
x2+7x+15=5
x=-5
x=-2
Subtract:
(-1+i)-(-7+4i)-5
1-3i
Determine the Discriminant:
-4x2-3x+14=4
169
Identify the Vertex:
y=-x2-4x+1
(-2,5)
Factor using Difference of Squares:
3x2-48
3(x+4)(x-4)
Solving using Square Roots:
x2+7=88
x=9
x=-9
Simplify:
5i+7i(i)
-7+5i
How many solutions does the following function have:
2x2+2x-6=-6
two
Identify the Vertex:
y=-3(x+1)(x-5)
(2,27)
Factor using Grouping:
25x3+5x2+30x+6
(5x2+6)(5x+1)
Solve using the Quadratic Formula:
x2=-3x+40
x=5
x=-8
Multiply:
(7i)[3i(-8-6i)]
168+126i
What type of solution does the following function have:
-x2+4x-10=-6
one real solution
Identify the Axis of Symmetry:
y=3x2+12x-8
x= -2
Factor the sum of cubes:
2x3+128y3
2(x+4y)(x2-4xy+16y2)
Choose the best method for solving:
10x2+6=3+9x
Quadratic Formula
Divide:
a/(ib)
-(ia)/b
Find the discriminant. How many and what type of solutions does the following function have?
-5x2+x+1=6
-99
two complex solutions