Derivative Rules
Concepts
Antiderivatives
100

d/dx (e^(4x))

4 e^(4x)

100

The average rate of change of H(t) between t = 4 and t = 10 can be computed by...

(H(10) - H(4))/(10 -4)
100
3x

3/2 x^2 + C

200

d/dx (3 tan x)

3 sec^2 x

200

If f'(x) < 0, then f(x) is ...

decreasing

200

(e^(2x) - sin(x))

1/2 e^(2x) + cos(x) + C

300

d/dx (4/x) =

-4/x^2

300

if f''(x) > 0, then f'(x) is ...

increasing

300
f'(2x)
1/2 f(2x) + C
400

d/dx (1/(x^3 + 2x)) =

-1/(x^3 + 2x)^2 * (3x^2 + 2)

400

The average value of f(x) on [-2, 5] can be computed by...

1/7 * integral of f(x) dx from -2 to 5

400

(3x^2 + 2x)*(x^3 + x^2 + 1)^5

1/6 (x^3 + x^2 + 1)^6 + C

500

d/dx (f(2x + 1)) =

f'(2x + 1) * 2

500

If H''(3) < 0, then a line tangent to H at x = 3 will be above or below the graph of H(x)?

above

500

g'(x) * sqrt(g(x))

2/3 (g(x))^(3/2) + C
M
e
n
u