Solving Radical Equations
Rationalizing the Denominator
Adding Radicals
Multiplying radicals
Combination (adding and multiplying radicals)
100

3√(6x) = 12

2.67 or 8/3

100

√12/√3

2

100

Simplify √2+3√2

4√2

100

Simplify √(6 ) * √(6 )

6

100

Simplify 2 √5 * (√6 + 2)

2 √30 + 4 √5

200

√(5x-6) = 12

30

200

7/√7

√7

200

Simplify √125+√5

6√5

200

Simplify -4 √15 * - √3

12√3

200

(10+√5)2

105+20√5

300

3√(x+5)  = 4

59

300

√x/√3

√(3x)/3

300

Simplify √18+√2

4√2

300

Simplify √(125n)

5√5n

300

Simplify (√5 + √8) (√45 + √8)

23 + 8√10

400

√(12+x) = x

Solution: x=4

Extraneous: x=-3

400

√20/√8

√10/2

400

Simplify 6√7 + √2 + √7

√2 + 7√7

400

√24 * √8

8√3

400

Simplify √6(4√12 + 5√8)

24√2 + 20√3

500

√(x+8)-√(3x)=0

x=4

500

√27/√5

3√15/5

500

Simplify 2√64 + 8√100

96

500

Simplify  (3√6)2

54

500

Simplify (3√20 + 4√25)(4√5 - 3√4)

28√5

M
e
n
u