Given the following ordered pairs, what are the ordered pairs of the inverse?
(-1,3) , (-2,2), (4,2), (2,-3)
(3,-1), (2, -2), (2,4), (-3,2)
sqrt(x) -5= 3
x=64
sqrt(16x4)
4x2
4sqrt(3x) + 5sqrt(3x)
9sqrt(3x)
9√2 / √18
3
Draw an example of a horizontal line test and write your conclusion.
Is / is not invertible function
(x-3)1/2=4x1/2
x=-1/5
2sqrt(x) -3sqrt(2x)
2sqrt(x)-3sqrt(2x)
√6 / √18
√3/3
Find the inverse function of f(x) = sqrt(x-2) + 2
f-1(x)=x2-4x+6 or f-1=(x-2)2+2
3(2x)1/3 = 6
x=4
cbrt(8x9)
2x2
(16x2y4/64x4y4)1/2
1/2x
5√12 / √10
√30
Given f(x)=2x2 - 2, what is the inverse of this function?
f-1(x)=sqrt((x+2)/2)
√(18+7x)=x
x=9
3sqrt(6x) * 4sqrt(3x2)
36x*sqrt(2x)
4 / (√7-4)
(4√7-16)/-9
f(x)=2x2-4 and g(x) =sqrt((x+4)/2)
Are f(x) and g(x) inverses? How do you know?
Yes, f(g(x)) and g(f(x)) simplify to x.
sqrt(x+4) - x = 4
x=-4 x=-3
(16x8)1/3
2x2(2x2)1/3
16√3+4√12-4√48
8√3
(6+5√3)/(2-√3)
27 + 16√3