Solve This Equation x+2 = √5x+16
x= 4 or x=-3
Let f(x) = 4(2x) and g(x) = -3(2x). Find (f = g)(x).
= 16 , but using a graphical approach you will get (f +g)(4) = 16 as well.
The inverse is f(x) =6x
The inverse is g(x)= 1/6x
Find (a) f(g(x)), (b) g(f(x)), c f(f(f)). State the Domain and range of each composition.
f(x)= 3x2, g(x)= -x-2
a. Find f(g(x)) b. Find g(f(x)) c. Find f(f(x))
a. 3x2+12x+12
b. -3x2-2
c. The domain of f(f(x)) is all real numbers and the range is ( 0,∞ )
Solve This Equation 2√x+1 = 4
x = 3
Let f(x)= 2x - 3 and g(x) = x4-2x3+ x Find (f+g)(x) and ( f - g)(x).
( f +g)
Find the inverse of f(x)= -2x + 5
The inverse is g(x)= x - 5/ -2
Find (a) f(g(x)), (b) g(f(x)), c f(f(f)). State the 0Domain and range of each composition.
f(x)=6x + 5, g(x)= √x+4
a. Find f(g(x)) b. Find g(f(x)) c. Find f(f(x))
a. 6(√x +4) +5 b. √6x + 9 c. The domain and range is all real numbers
Solve This Equation 3√2x - 9 = 2
x = 18
f(x)= 2(3x), g(x)= -6(3x);
= -108
Find the inverse of f(x)= -1/2x + 4
The inverse is g(x) = -2(x - 4)
Find (a) f(g(x)), (b) g(f(x)), c f(f(f)). State the 0Domain and range of each composition.
f(x)=-7x +1, g(x) = 3√x-2
a. Find f(g(x)) b. Find g(f(x)) c. Find f(f(x))
a. 07 (3√x - 2) + 1
b. 3√(-7 - 1)
c. The domain and range is all real numbers.
Solve 3√x - 10 = - 7
x = 27
Let f(x) = 2x - 3 and g(x) = x4-2x3+x. Find (f + g)(x) and (f - g)(x) and state the domain. Then evaluate (-2)
(f+g) (x)= 1x4-2x3+3x-3
(f - g)(x)= -x4+2x3+x-3
Domain for both: All real numbers
Evaluate:
(f +g)(-2)= 23
(f -g)(-2)= -37
Find the inverse of f(x)= 2/3x - 1/3.
The inverse is g(x)= 3/2x + 1/2.
Find (a) f(g(x)), (b) g(f(x)), c f(f(f)). State the 0Domain and range of each composition.
f(x)= x - 9, g(x)=x3-4x + 3
a. Find f(g(x)) b. Find g(f(x)) c. Find f(f(x))
a. x3-4x-6 b. (x - 9)39-4x+3 c. The domain and range are all real numbers
Solve 2(x + 11)1/2 = x + 3
x = 5
Let f(x)= 2x and g(x)=3x. Find (fg)(x) (f/g)(x).
(fg)(x)=(22)(3x)
(f/g)(x)= 2x/3x
Determine if f(x)=x3-1 is invertible
It is invertible and f-1(x)= 3√x+1
Find (a) f(g(x)), (b) g(f(x)), c f(f(f)). State the 0Domain and range of each composition.
Let f(x)= 4x - 3, g(x)= x2 + 8
a. Find f(g(x)) b. Find g(f(x)) c. Find f(f(x))
a. 4x2+29 b. 16x2-24x+17 c. The domain and range are all real numbers.