Vocabulary
Factor & Simplify
Multiply & Divide
Give the Domain Restriction(s)
Give the Domain Restriction(s)
100

A ______ is a ratio of two polynomials.

rational expression

100

(x² + 10x + 25) / (x² + 9x + 20)

(x + 5) / (x + 4)

100

(8y - 4) / (10y - 5) * (5y - 15) / (3y - 9)

4/3

100

(x² + 10x + 25) / (x² + 9x + 20)

D: xne-4,-5

100

(8y - 4) / (10y - 5) * (5y - 15) / (3y - 9)

D: yne3, 1/2

200

An ______ is a value or set of values for which results in a denominator of 0

domain restriction or excluded value

200

(x² - 6x - 16) / (x² + 5x + 6)

(x - 8) / (x + 3)

200

(2x + 12) / (3x - 9) * (2x - 6) / (3x + 8)

(4(x + 6)) / (3(3x + 8))

200

(x² - 6x - 16) / (x² + 5x + 6)

D: xne-2,-3

200

(2x + 12) / (3x - 9) * (2x - 6) / (3x + 8)

D: xne3, -8/3

300

To simplify a rational expression, you must first ______ .

factor it

300

(6c² + 9c) / (3c)

2c + 3

300

(x² - 4) / (x² - 1) * (x + 1) / (x² + 2x)

(x - 2) /(x(x - 1))

300

(6c² + 9c) / (3c)

D: cne0

300

(x² - 4) / (x² - 1) * (x + 1) / (x² + 2x)

D: xne1, -1, -2, 0

400

A binomial that factors into binomial conjugates such as (x+5)(x-5) is called ______.

a difference of squares

400

(2x² - 3x - 2) / (x² - 5x + 6)

(2x + 1) / (x - 3)

400

(6x + 6y) / (x - y) -: 18 / (5x - 5y)

(5(x + y) )/ 3

400

(2x² - 3x - 2) / (x² - 5x + 6)

D: xne2,3

400

(6x + 6y) / (x - y) -: 18 / (5x - 5y)

D: xney

500

Factor the  ______ of the rational expression in order to find the domain restrictions.

denominator

500

(x² + 8x + 16) / (x² - 2x - 24)

(x + 4) / (x - 6)

500

(3y - 12) / (2y + 4) -: (6y - 24) / (4y + 8)

1

500

(x² + 8x + 16) / (x² - 2x - 24)

D: xne-4,6

500

(3y - 12) / (2y + 4) -: (6y - 24) / (4y + 8)

D: yne-2, 4

M
e
n
u