Graphing Rational Functions
Rational Inequality
Composite Function
Inverse Functions
Other
100
f(x)= x/(3x-15)

FIND:

1. Domain

2. Vertical asymptote

3. Holes

4. Horizontal asymptote

1. Domain: (-infinity, 5) U (5, infinity)

2. Vertical asymptote: x=5

3. Holes: DNE

4. y= 1/3

100

Solve the rational equation. Be sure to check for extraneous solutions.

x/(5x + 4)= 5


x=-5/6
100

Let 

f(x) = 3x − 6, g(x) = |x|, h(x) = sqrt of x and k(x) = 1/x

 Find and simplify the indicated composite function.

(h ∘ g ∘ k)(x)

sqrt of 1/(|x|)
100

Find the inverse. Check your answer algebraically and graphically.

f(x) = 1 − (3 + 2x)/4

 

f ^−1(x) = 


-2x + 1/2
100

Solve the following equation. (Enter your answers as a comma-separated list.)

x^2/3=1

x= -1,1
200

f(x) = 4 + 7x/(6 − 4x)

FIND: 

Domain

VA

Holes

HA


Domain: (-infinity, 3/2) U (3/2, infinity)

VA: x=3/2

Holes: DNE

HA: y= -7/4

200

Solve the rational equation. Be sure to check for extraneous solutions.

8x − 3/(x^2 + 12) = 1

x=3 x=5
200

Let 

f(x) = 5x − 3, g(x) = |x|, h(x) = sqrt of x

 and k(x) = 1/x

 Find and simplify the indicated composite function.

(f ∘ g ∘ h)(x)

5(sqrt of x)-3 
200

Find the inverse. Check your answer algebraically and graphically.

f(x) = 9(x + 4)^2 − 2, for x ≤ −4

f^-1(x)=

-sqrt(x+2/9)-4
200

Solve the following equation. (Enter your answers as a comma-separated list.)


sqrt(x − 4) + sqrt(x − 7)=3

 

x= 8
300

f(x) = x^3 + 1/(x^2 − 1)

FIND:
Domain

VA

Holes

HA


Domain: (-infinity, -1) U (-1,1) U (1, infinity)

VA: x=1

Hole: (-1, -3/2)

HA: DNE

300

Solve the rational inequality. Express your answer using interval notation.

x − 3/(x + 2)≤ 0

(-2,3]
300

Write the following as a composition of two non-identity functions.

(g ∘ f)(x) = h(x) = sqrt of 9x − 5


f(x)=9x-5

g(x)= sqrt of x

300

Find the inverse. Check your answer algebraically and graphically.

f(x) = 7/(x − 3)

f^-1(x)=

 
7/x + 3
300

Solve the following equation. (Enter your answers as a comma-separated list.)

8 − (4 − 2x)^2/3 = 4

x=-2,6
400

f(x) =  x^3 + 4x^2 + 3x/(x^2 − 2x − 3)

FIND

Domain

VA

Hole

HA

Domain: (-infinity, -1) U (-1,3) U (3, infinity)

VA: x=3

Hole: (-1,1)

HA: DNE

400

Solve the rational inequality. Express your answer using interval notation. 

x/(x^2 − 16)> 0

(-4,0) U (4, infinity)
400

Let f be the function defined by 

f = {(−3, 5), (−2, 4), (−1, 7), (0, −1), (1, 5), (2,7), (3, −1)}

 and let g be the function defined 

g = {(−3, −3), (−2, 8), (−1, −1), (0, 2), (1, −1), (2, 7), (3, 2)}.

 Find the following value if it exists. (If an answer does not exist, enter DNE.)

(f ∘ f)(0)

7
400

Find the inverse. Check your answer algebraically and graphically.

f(x) = 4x + 3/(3x − 2)

f^-1(x)=

 
2x+3/(3x-4)
400

Solve the following inequality.

2(x − 2)^−1/3 − 2/3x(x − 2)^−4/3 ≤ 0

(-infinity, 2) U (2,3)
500

Use the six-step procedure to graph:

f(x) = 1/(x^2 − 36)


500

Solve the rational inequality. Express your answer using interval notation. 

 

2x^3 + 3x^2 − 5x/(5x^2 + 11x + 6)> 0

(-5/2,-6/5) U (-1,0) U (1, infinity)
500

Let 

f(x) = 5x − 4, g(x) = |x|, h(x) = sqrt of x

 and k(x) = 4/x

 Find and simplify the indicated composite function.

(f ∘ k)(x)

20-4x/(x)
500

Find the inverse. Check your answer algebraically and graphically.

f(x) = −6x − 5/(x + 6)

f^-1(x)=


-6x-5/(x+6)
500

Find the inverse of 

k(x) = 2x/sqrt(x^2 − 1)



k^-1(x)= x/sqrt(x^2-4)
M
e
n
u