Simplify 20x3/4x
5x2
[(3x+2)/9x] + [(2x-5)/9x]
(5x-3)/9x
Find the Horizontal Asymptote. (3x-2)/(2x+4)
HA = 3/2
Find the HA y = (x-1) / (x3 -1)
HA y = 0
Approximate log532
2.2 or 2.15
Simplify (25x-25)/(15x-15)
5/3
[(5/(x2 +3x+2)] - [(5x-1)/(x2 +3x+2)]
(-5x+6)/(x2 +3x+2)
Find the vertical asymptotes. (2x+3)/(x+)(x-3)
VA = {-1,3}
find the y-intercept (3x^2 -4x+6)/(2x^2 +3x)
y-intercept = none
What is the base of log 2x3 ?
Base is 10
(x+3)/4 * (3x-18)/(3x+9)
(x-6)/4
[6/(x-1)] - [3/x]
(3x+3)/(x(x-1))
find the holes (x^2 +2x)/(4x+8)
Holes x = -2
what is the horizontal asymptote (x^2 -2x)/(x+3)
none
Solve for x 6 / (2x - 1) = 4 / (x+6)
x = 20
(-7b+28)/(b-4) * 1/(b+2)
-7/(b+2)
(x-2)/(3x2) + 4/x - 5/(2x)
(11x-4)/(6x2)
find the x-intercepts y = (3x-6) / (x+2)
X-intercept (2,0)
Find VA (x^3 -9x)/(2x^2 - 18)
VA none
Solve for x log65 + log6x = log6(3x - 10)
x = -5
[(v-7)(v+2)]/[(v+2)(v-9)] / (v-7)/(v-9)
1
(2x2+2x-4)/(x2+5x+6) - (x2-x)/(x2+2x-3)
(x-2)/(x+3)
Find the holes
(-oo, 2) u (2,oo)
Find the holes (- x2 +2x + 8) / (x2 + 5x + 6)
Holes at x = - 2
Condense 5 log x - 4 log x
log x