Vertex Form
Add, Subtract, Multiply Polynomials
Factor and Solve Quadratics
Solve a>1
Vertex Form a>1
100

Identify the vertex for the graph m(x). Identify whether the point is a maximum or minimum. (Show image) 

Vertex: (4,4)
Maximum

100

Simplify: (4x2 + 3x – 8) + (x2 + 8x – 5)

5x+ 11x - 13

100

Factor: x2 + 8x + 15

(x+3)(x+5)

200

Describe the transformations from y = x2 to y = (x + 4)2 + 7. And state the vertex.

Transformations: left 4 units, up 7 units

Vertex: (-4,7)

200

Simplify: (3x2 – 2x + 4) – (x2 + 5x + 8)

2x2-7x-4

200

Factor: x2 + 2x – 8

(x-2)(x+4)

300

Complete the square to write in vertex form and then write the vertex. 

f(x) = x2 + 8x + 3

Vertex form: f(x)= 1 (x+4)- 13

Vertex: (-4,-13)

300

Multiply: (x + 4)(x + 3)

x2+7x+12

300

Solve: x2 – x – 30 = 0

(x+5)(x-6)=0

x=-5, x=6

400

Complete the square to write in vertex form and then write the vertex. 

f(x) = x2 + 10x + 12

Vertex form: f(x)= 1 (x+5)- 13

Vertex: (-5,-13)

400

Multiply: (3x – 2)(4x + 3)

12x2+x-6

400

Solve: x2 – 5x + 6 = 0

(x-2)(x-3)=0

x=2, x=3

400

Solve: 2x2 – x – 15 = 0

x=(-5/2)

x=3

400

Complete the square to write in vertex form and then write the vertex.

f(x) = 2x2 – 8x + 7

Vertex form: f(x)=2 (x-2)2 -1

Vertex: (2,-1)

500

Solve: 3x2 + 10x – 8 = 0

x=(2/3)

x=-4

500

Complete the square to write in vertex form and then write the vertex.

f(x) = 3x2 + 12x + 2

Vertex form: f(x)=3 (x+2)2 -10

Vertex: (-2,-10)

M
e
n
u