Identify the vertex for the graph m(x). Identify whether the point is a maximum or minimum. (Show image)
Vertex: (4,4)
Maximum
Simplify: (4x2 + 3x – 8) + (x2 + 8x – 5)
5x2 + 11x - 13
Factor: x2 + 8x + 15
(x+3)(x+5)
Describe the transformations from y = x2 to y = (x + 4)2 + 7. And state the vertex.
Transformations: left 4 units, up 7 units
Vertex: (-4,7)
Simplify: (3x2 – 2x + 4) – (x2 + 5x + 8)
2x2-7x-4
Factor: x2 + 2x – 8
(x-2)(x+4)
Complete the square to write in vertex form and then write the vertex.
f(x) = x2 + 8x + 3
Vertex form: f(x)= 1 (x+4)2 - 13
Vertex: (-4,-13)
Multiply: (x + 4)(x + 3)
x2+7x+12
Solve: x2 – x – 30 = 0
(x+5)(x-6)=0
x=-5, x=6
Complete the square to write in vertex form and then write the vertex.
f(x) = x2 + 10x + 12
Vertex form: f(x)= 1 (x+5)2 - 13
Vertex: (-5,-13)
Multiply: (3x – 2)(4x + 3)
12x2+x-6
Solve: x2 – 5x + 6 = 0
(x-2)(x-3)=0
x=2, x=3
Solve: 2x2 – x – 15 = 0
x=(-5/2)
x=3
Complete the square to write in vertex form and then write the vertex.
f(x) = 2x2 – 8x + 7
Vertex form: f(x)=2 (x-2)2 -1
Vertex: (2,-1)
Solve: 3x2 + 10x – 8 = 0
x=(2/3)
x=-4
Complete the square to write in vertex form and then write the vertex.
f(x) = 3x2 + 12x + 2
Vertex: (-2,-10)