The Matrix
Symptoms of Equations
Casa La De Moivre's
Hannibal Vector
Impartial fractions
100
Find A+B without using a calculator A=[-1 3] [ 4 0] B=[2 -1] [4 3]
[1 2] [8 3]
100
Solve the system: 2x-y=10 3x+2y=1
Solution: x=3 y=-4
100
What is the trigonometric form of the complex number 2+2i
2sqrt(2)(cos(pi/4)+i(sin(pi/4))
100
Define a Vector
A quantity with magnitude and direction
100
x^2 - 7 / x(x^2 - 4)
(A1/x)+(A2/x-2)+(A3/x+2)
200
Find AB without using a calculator A=[-1 4] [ 0 6] B=[3 -1 5] [0 -2 4]
[-3 -7 -11] [ 0 -12 24]
200
Solve the Problem: y=x^2 y-9=0
Solution: y=9 x=3
200
Find the product of z1 and z2 in trigonometric form z1=7(cos25+isin25) z2=2(cos130+isin130)
14cos(155* + i sin(155*))
200
find the component form and magnitude of the vector PQ if P= (-2,2) Q= (3,4)
Component form: {5,2} Magnitude: sqrt(29)
200
x+22/(x+4)(x-2)=A/(x+4)+B/(x-2)^2+C/(x-2)^3
(-3/x+4)+(4/x-2)
300
Find AB without using a calculator A=[0 1 0] [1 0 0] [0 0 1] B=[ 2 -3 4] [ 1 2 -3] [-2 1 -1]
[ 1 2 -3] [ 2 -3 4] [-2 1 -1]
300
Solve the problem algebraically y = x^3 - x^2 y = -2x^2
Solution y=18 x=3
300
Find the trigonometric form of the quotient: 2(cos30*+i sin30) / 3(cos60*+i sin60*)
2/3(cos20*-i sin30*)
300
Find a unit vector in the direction of the vector {-2,4}
-.45i + .89j
300
5x^5+22x^4+36x^3+53x^2+71x+20/(x+3)^2(x^2+2)^2
(2/x+3)+(-1/(x+3))^2+(3x-1/x^2+2)+(x+2/(x^2+2))
400
Find the inverse of the matrix: [ 1 2 0 -1] [ 2 -1 1 2] [ 2 0 1 2] [-1 1 1 4]
[-2 -5 6 -1] [ 0 -1 1 0] [10 24 -27 4] [-3 -7 8 -1]
400
Find the Equilibrium point for the given supply and demand curve: p=200-15x p=50+25x
Solution: (3.75,143.75)
400
Use De Moivre's theorem to find the indicated power of the complex number: (1-sqrt(3 i))^3 Write your answer in a+b i form
-8
400
Find the magnitude and direction angle of the vector {3,4}
Magnitude: 5 Direction Angle: 53.13*
400
2/(x-5)(x-3)
(1/x-5)+(-1/x-3)
500
Evaluate the determinant of the matrix: [ 1 -3 2] [ 2 4 -1] [-2 0 1]
20
500
Use elimination to solve the system of equations: x^2 - 2y = -6 x^2 + y = 4
Solution: (+-[sqrt]2/3 , 10/3)
500
Determine z and the three cube roots of z if one cube root of z is: 1+sqrt(3i)
-8 -2 1+-sqrt(3i)
500
A force of 50 lbs acts on an object at an angle of 45*. A second force of 75 lbs acts on the object at an angle of -30*. Combine the two vectors and find the resulting force and angle.
Force: 100.33 lbs Angle: -1.22*
500
(x^2-x+2)/(x^3-2x^2+x)
(2/x)+(-1/x-1)+(2/(x-1))^2
M
e
n
u