Simplifying
Adding
Multiplying Day 1
Multiplying Day 2
Rationalizing
100

Simplify √12

2√3

100

Add the following radicals: 2√5 + 3√5

5√5

100

√4 x √4

4

100

What two methods did we learn when multiplying 2 binomials? 

Box Method and Double Distribute 

100

Simplify (3)/(√5)

(3√5)/(5)

200

Simplify √54

3√6

200

Add the following radicals: 4√3 + 2√3 + 7√3.

13√3

200

Multiply the following radicals: (√5)(√8). Simplify if necessary.

2√10

200

(4√5 + 3√3)(3√5 - 4√3) 

24 - 7√15

200

Simplify (√8)/(√6)

(4√3)/6 

300

Simplify -3√28

-6√7

300

8√90 + 7√10 

31√10

300

Multiply the following radicals: (√10)(3√20)

30√2

300

(8 + √2)(3 + √5) 

24 + 8√5 + 3√2 + √10 

300

Simplify 3/(2√3) 

(√3)/2 

400

√125

5√5

400

Add the following radicals: √8 + √98 + √72.

15√2

400

Multiply √10(√5 + 2) 

5√2 + 2√10

400

(√3 + 1)(√3 - 3) 

-2√3

400

Simplify 1/(√2)

(√2)/2

500

Simplify: √112

4√7

500

√48 + 3√75

19√3

500

Multiply: 5√5(√5 + 4) 

25 + 20√5

500

(2√3 + √5)(3√3 - 2√5) 

8 - √15 

500

Simplify 5/(√3) 

(5√3)/3

M
e
n
u