Any Strategy
Substitution
Elimination
Which Point?
Vocab
100

y = 2x + 2

y = x - 1

(-3, -4)

100

y = 2

3x + 2y = 10

(2, 2)

100

x + 3y = 5

2x -3y = -8

(-1, 2)

100

y = -x +5

y = x + 1

Which point is the solution to this linear system?

A.  (2, 3)                           C. (3, 2)

B. (2, 2)                            D. (4, 6)

A

100

Consists of two or more linear equations with the same variables.

System of linear equations (linear system)

200

y = 2x + 4

y = 3x + 2

(2, 8)

200

x + 3y = 2

-x + 2y = 3

(-1, 1)

200

-5y + 8x = -18

5y + 2x = 58

(4, 10)

200

y = 3x -5

y = -1/4x - 7/4

Which point is the solution to this linear system?

A.  (-1,2)                           C. (1,-2)

B. (-1,-2)                           D. (1,2)

C.

200
The method of solving equations where you add or subtract equations to end up with one variable.
Elimination
300

x = 3

y = 2x + 1

(3, 7)

300

x - 2y = -10

3x - y = 0

(2, 6)

300

3y - 5x = -26

-2y - 5x = -16

(4, -2)

300

y = 5x

x + y = -6

Which point is the solution to this linear system?

A.  (0,0)                           C. (-4, -2)

B. (1,5)                           D. (-1,-5)

D.

300

How can you tell if a linear system has infinitely many solutions?

The equations are the same or will be equivalent when simplified.


400

4x + 2y = 8

2x + y = 4

No solution

400

2x – 3y = –2

 4x + y = 24

(5, 4)

400

3x−4y=8

18x−5y=10

(0, -2)

400

x + 2y = 8

3x - 4y = 4

Which point is the solution to this linear system?

A.  (6, 1)                           C. (0, -1)

B. (4, 2)                           D. (8, 0)

B

400

How do I get no solution in a system on equations.

The lines are parallel.

500

y = 1/2 x + 2

y = 1/4 x + 4

(8, 6)

500

5x - y = -13

-5x +2y = 24

no solution

500

4x−9y−2=0

12x−5y+38=0

(-4, -2)

500

y = 1/2x - 8

2x + 5y = -13

Which point is the solution to this linear system?

A.  (16, 0)                           C. (0, -8)

B. (6, -5)                           D. (1, -7.5)

B.

500

How do you know if a system of equations only has 1 solution?

The equations have a different slope.

M
e
n
u