What is the 1st step in solving 3 variable systems?
The first step is to label each equation as A,B and C
(1) 2x+3y=16
(2) 5x-4y=-5
x=2, y=4
(1) x+y+z=2
(2) -x+3y+2z=8
(3) 4x+y=4
x=0, y=4, z=-2
How many variables are in this system?
x-2y+z=5 and 2x+y=3
3 Variables
(1) -6x+6y=6
(2) 6x-3y=12
x=5,y=6
(1) x-2y+3z=9
(2) -x+3y-z=-6
(3) 2x-5y+5z=17
x=1, y=-1, z=2
What do you do if the variables aren’t opposite and you can’t eliminat?
You multiply one or both equations by a constant to make them opposites
(1) -2x+6y=4
(2) 2x-2y=8
x=7, y=3
(1) -x+4y-2z=2
(2) -2x-4y+6z=-24
(3) 4x-4y+5z=-8
x=2, y=-1, z=-4
50 x 260
13000
(1) x-y=11
(2) 2x+y=19
x=10, y=-1
(1) x + y - 2z = 5
(2) -x + 2y + z = 2
(3) 2x + 3y - z = 9
x=1, y=2, z=-1
What’s the coefficient of z in: 5x-2z+y=0
-2
(1) -4x+9y=9
(2) 4(x-3y=-6)
x=-9/5 y=-1
(1) 2x + y - z = 9
(2) -x + 6y + 2z = -17
(3) 5x + 7y + z = 4
x=3, 6=-1, z=-4