Expansion of Identities
Factorization of Identities
Mixed Identities
Applications
Final Question
100

(x+5)2

x2+10x+25

100

x2 + 6x + 9

(x+3)2

100

Expand (x+2)2 + (3x-2)2

10x2-8x+8

100

The area of a square is x2+ 6x+ 9.  What is the side length of the square?

x+3

200

(3y - 2)2

9y- 12y + 4 

200

4x2 - 12x + 9

(2x - 3)2

200

Expand 4x2 - 9 - (3x+1)(2x-3)

−2x2+7x−6

200

A rectangular garden has a length of x+5 and width x−5 What is the area of the garden?

x2 - 25

300

(2x - 7)(7 - 2x)

-(4x2 - 49)

= -4x2+49

300

25x2 - 16

(5x + 4)(5x - 4)

300

Expand (3x - 2)- (2x-1)2

5x2 - 8x +3

300

The area of Square 1 is (x+2)2 and of Square 2 (2x+1)2.  What is the area of the difference of S1 - S2 ?

(x+2)2 - (2x+1)

= -3x2 + 3
400

5(2x + 1/5)2

20x2 + 4x + 1/5

400

(x-2)2 - 1

(x-3)(x-1)

400

Factorize 4x2 − 9y+(2x + 3y)2

(2x+3y)(2x−3y)+(2x + 3y)2

= (2x+3y)[ (2x-3y)+(2x+3y) ]

=(4x)(2x+3y)

400

The difference between the squares of two consecutive integers is 15. What are the integers?

8 and 7  (or -8 and -7)

500

7(5/7 x - 2)2

25/7 x2 - 20x +28

500

(3x - 4)2 - (3x - 4) + 1

(3x - 4)[(3x-4) - 1] + 1

=(3x - 4) (3x - 5) + 1

500

Factorize x4 - 16

(x2+4)(x+2)(x−2)

500

The diagonal of a square is 10 units. Find the area of the square using the identity s= d2/2 where s is the side length and d is the diagonal.

50 square units

500

Factorize (3x+4)2 - (2x+1)2

5(x+1)(x+3)

M
e
n
u