Find the solution to the system of equations by graphing.
y = 3x - 2
y = -x - 2
(0, -2)
Find the solution to the system of equations by elimination.
r + s = -6
r - s = -10
(-8, 2)
Solve the system by Substitution
x = 4y
2x + 3y = 22
(8, 2)
The sum of two numbers is 104. Their difference is 68. What are the numbers?
86 and 18
Find the solution to the system of equations by graphing.
y = -3
x = 5
(5, -3)
Find the solution to the system of equations by elimination.
8a + 5b = 9
2a - 5b = -4
(0.5, 1) or (1/2, 1)
Solve the system by Substitution
y = x - 2
3x - y = 16
(7, 5)
A shopper bought 6 shirts and 8 hats for $700. A week later, at the same prices, he bought 9 shirts and 6 hats for $660. What was the cost of one shirt and one hat?
$30 per shirt and $65 per hat
Find the solution to the system of equations by graphing
y = (1/3)x - 3
3y = 6x - 24
(3, -2)
Find the solution to the system of equations by elimination.
2a - 4b = 12
-8a + 16b = -48
Infinitely Many Solutions
Solve the system by substitution
y = 3x - 1
7x + 2y = 37
(3, 8)
Find The dimensions of a rectangle whose perimeter is 78 inches, when the length of the rectangle is twice its width
l = 26 and w = 13
Find The solution to the system of equations by graphing:
y - 3x = 3
y +2 = 3x
No Solution
Find the solution to the system of equations by elimination.
2x + 3y = 6
3x + 5y = 15
(-15, 12)
Solve the system by substitution
3s - 2t = 4
t -2s = - 1
(-2, -5)
The postal service offers flat-rate shipping for priority mail in special boxes. Today, Tessa shipped 9 small boxes and 9 large boxes, which cost her $144 to ship. Meanwhile, Cody shipped 9 small boxes and 5 large boxes, and paid $104. How much does it cost to ship these two sizes of box?
$6 for a small box and $10 for a large box.
Find the solution to the system of equations by graphing.
4x + 2y = 2
-x+4y=4
(0, 1)
Find the solution to the system of equations by elimination.
(1/3)x + (1/4)y = 10
(1/3)x - (1/2)y = 4
(24, 8)
Solve the system by substitution
–3x − 5y = 10
6x + 6y = 12
(10, -8)
Some History teachers at Springdale High School are purchasing tickets for students and their adult chaperones to go on a field trip to a nearby museum. For her class, Mrs. Massey bought 26 student tickets and 30 adult tickets, which cost a total of $966. Mr. Espinoza spent $954, getting 24 student tickets and 30 adult tickets. What is the price for each type of ticket?
$6 for a student ticket
$27 for an adult ticket