What type of transformation is represented below?
(x+3, y)
Translation right 3
How many lines of symmetry does a rectangle have?

2
What happened to map Triangle ABC to map onto Triangle ZXY?

Reflect across BC and Translate it down from Point B to X.
Find point M when you rotate this figure 180 degrees.

(-2,8)
Triangle ABC = Triangle XYZ
Which segment is congruent to AB?
Segment XY
What type of transformation is represented below?
(-x,y)
Relfection across y-axis
How many lines of symmetry does an Isosceles trapezoid have?

1
What happened from Triangle BDN to Triangle XZY?

Translated right from Point B to Point X
Reflect the image across the x axis. Where will Point K end up?

(8,-4)
Triangle ABC = Triangle HIJ
Which Segment is congruent to Segment AC?
Segmet HJ
What type of transformation is represented below?
(-y,x)
Clockwise 270 or Counterclockwise 90
How many lines of symmetry does a regular pentagon have?

5
What happened to the following?

Reflect across DF and Translate from DD'
Rotate image 180 degrees, where will points W and Y end up

W'(-2,4) and Y'(-7,-7)
Triangle LMN = Triangle QRS
What angle is congruent to <NLM?
<SQR
Name all types of Isometry...
Reflection
Rotation
Translation
How many lines of symmetry does a regular hexagon have?

6
What happened?

Reflected across vertical line equidistant between A and A'
Where will points A and C be after reflect across y axis and down 4?

A'(3,1)
C'(1,-3)
Quadrilateral MATH = Quadrilateral EVIL
Which angle is congruent to <HMA?
<LEV
Which figure represents the Perpendicular Bisector theorem? 1st example or 2nd example? Must Explain Why to Gain Credit.


2nd example because it shows the points F and F' are equidistant from line r and that they are perpendicular to line r as well.
How many lines of symmetry does a circle have?

infinite
Which transformations happened?

Rotate CCW 90 degrees and moves from ZZ'
Reflect across the y axis and up 3. Find Points A' and B'.

A'(9,10) and B'(5,12)
Triangle MATH = Triangle EVIL
Create a Triangle Congruency statements for Segments.
MA=EV
AT=VI
TH=IL
MH=EL