Transformations on the function f(x) + 6
up 6
(f+g)(x) if f(x) = x2 and g(x) = 4x - 5
x2 + 4x -5
(fg)(x) if f(x) = 2x - 5 and g(x) = 2 - x
-2x2 +9x -10
(f/g)(x) if f(x) = 2x - 5 and g(x) = 2 - x
(2x - 5)/(2 - x)
g o f if f(x) = x2 and g(x) = x - 1
What is x2 - 1
g o f = g(f(x)) = g(x2) = x2 - 1
Transformations on 3f(x - 4)
right 4, vertical stretch
(f - g)(x) if f(x) = x2 and g(x) = 4x - 5
x2 - 4x + 5
(fg)(x) if f(x) = x2 and g(x) = 4x - 5
4x3 -5x2
(f/g)(x) if f(x) = x2 and g(x) = 4x - 5
x2/(4x - 5)
f o g if f(x) = x2 and g(x) = x - 1
What is x2 - 2x + 2?
f o g = f(g(x)) = f(x - 1) = (x-1)2 = x2 - 2x + 2
Transformations on -f(3x) - 2
horizontal compression, reflect over x, down 2
(f + g)(x) if f(x) = 2x - 5 and g(x) = 2 - x
x - 3
(fg)(x) if f(x) = x2 + 6 and g(x) = sqrt(1-x)
(x2 + 6)*sqrt(1-x)
(f/g)(x) if f(x) = x2 + 6 and g(x) = sqrt(1-x)
SIMPLIFY ALL THE WAY
((x2 + 6)*sqrt(1-x))/(1-x)
x9 + 3x6 + 3x3 + 2