Sum
sin θ
= y/r
cos θ
= x/r
sec θ
= r/x
cot θ
= x/y
csc θ
= r/y
sin-1 0
= 0
arccos(-1)
= pi
tan-1 0
= 0
arctan(1)
= pi/4
arcsin(1)
= pi/2
sin-1(1/2)
= pi/6
tan-1(-√3)
= -pi/3
cos-1(-1/2)
its -1 over 2
= 2pi/3
cos-1(-√3/2)
its -√3 over 2 btw
= 5pi/6
tan-1(√3)
= pi/3
sec[arctan(-3/5)]
its -3 over 5 btw
= √34/5
cos(arctan 2)
= √5/5
sin(arccos√5/5)
its √5 over 5 btw
= 2√5/5
sec(arcsin 4/5)
= 5/3
cos[sin-1(-3/5)]
its -3 over 5 btw
= 4/5
sin(tan-1(√3))
= √3/2
cos(tan-1(-1))
= √2/2
tan-1(cos(pi))
= -pi/4
cos-1(sin(pi/6))
= pi/3
arccos(sin(pi/3)
= pi/6