100
Prove that (sec(θ)-csc(θ))/(sec(θ)csc(θ)) = sin(θ)-cos(θ)
Step 1 - (sec(θ)-csc(θ))/(sec(θ)csc(θ)) = sin(θ)-cos(θ) -->
Step 2 - ((1/(cos(θ))-(1/sin(θ)))/((1/(cos(θ))*(1/sin(θ))) = sin(θ)-cos(θ) -->
Step 3 - ((1/cos(θ))-(1/sin(θ)))*(cos(θ)sin(θ)) = sin(θ)-cos(θ) -->
Step 4 - ((sin(θ)/(cos(θ)sin(θ)))-(cos(θ)/(cos(θ)sin(θ))))*(cos(θ)sin(θ)) = sin(θ)-cos(θ) -->
Step 5 - ((sin(θ)-cos(θ))/(cos(θ)sin(θ)))*(cos(θ)sin(θ)) = sin(θ)-cos(θ) -->
Step 6 - sin(θ)-cos(θ) = sin(θ)-cos(θ)
Q.E.D.