simplifying numbers
parabolas
domain and range
evaluated inputs
function's symmetry
100

(2+5i)+(4-3i)

6+2i

100

-b/2a

what is the equation for the axis of symmetry

100

f(x)=x2=4

find domain

D:(-∞,∞)


100

-4x+3 if x < 3

3x2+1 if x > 12 

Solve for when f(-7) and f(14)

-4(-7)+3= 31

3(14)2+1= 589

100

y=x2

f(-x)=f(x)

y-axis symmetry (even)


200

i-12

1

200

f(x)=x2-2x+1 

Find axis of Symmetry

AOS= 1

200

f(x)=(x+1)/x-5

find domain

D: (-∞,5)U(5,∞)

200

-15 if x>-5

√x+6 if -5</=x<=10

2/x +8 if x > 10

solve for when f(-17) and f(70)

f(-17)=-15

f(70)= 281/35 or 8.029

200

f(x)=x2+6

f(-x)=f(x)

y-axis symmetry (even)

300

√32x2

4lxl√2

300

f(x)=2x2-8x-5

find zeros and axis of symmetry

AOS= 2

Zeros= (4±√26)/2


300

f(x)=(3x2+4x)/x+4

find domain 

D:(-∞,-4)U(-4,∞)

300

4x+3 if x<3

-x3 if 3</=x</=8

3x2+1 if x>12

Solve for when f(-7) and f(14)

f(-7)= 31

f(14)= 589

300

f(x)=x4-29x2+100

f(-x)=f(x)

y-axis symmetry (even)

400

∛128a13b6

4a4b2∛2a

400

graph the function

f(x)=x2+4x-2

on slides

400

f(x)=(√x+4)/x-2

find domain 

D:[ -4,2)U(2,∞

400

-4x+3 if x <3

-x3 if 3</=x</=8

3x2+1 if x>12

Solve for when f(-30) f (30)

123= f(-30)

2701=f(30

400

f(x)=x3-8x

-f(x)=f(-x)

Origin symmetry (odd)

500

5√w6x8y10z13

wxy2z2  5√yx3z3

500

f(x)=-x2+6x+2

graph the funtion and make not of its zeros, maximum or minimum, and AOS

on slides

Zeros= 3±√11

Maximum= (3,11)

AoS=3


500

f(x)=(x-2)2/√4x

find domain

D:(0,∞)

500

2x2+9 if x<7

x3+4 if 7</=x</=10

x/2-12x if x>10

solve for when f(9), f(-11), and f(10)

f(9)=171

f(-11)=-275/2 or -137.5

f(10)=1004

500

f(x)=x4+3x2

Neither 

M
e
n
u