Classifying
Adding
Subtracting
Multiplying
Area and perimeter
100

Identify the Degree:

3xy

2

100

12p3 + 11p2 + 8p3

20p3 + 11p2

100

(x3 + 4y) – (2x3)

-x3 + 4y

100

4y2(y2 + 3)

4y4 + 12y2

100

Find the Perimeter:


P = 33b - 8

200

Identify the degree:

11x7 + 3x3

7

200

2s2 + 3s2 + s

5s2 + s

200

(7m4 – 2m2) – (5m4 – 5m2 + 8)

2m4 + 3m2- 8

200

fg(f4 + 2f3g – 3f2g2 + fg3)

f5g + 2f4g2 – 3f3g3 + f2g4

200

Find the Area:


A = 5x² + 42x + 16

300

Write this in standard form: 

24g3 + 10 + 7g5 – g2

7g5  + 24g3 – g2+ 10  

300

4z4 – 8 + 16z4 + 2

20z4 – 6

300

(–10x2 – 3x + 7) – (x2 – 9)

–11x2 – 3x + 16

300

(a – 3)(2 – 5a + a2)  

a3 - 8a2 + 17a - 6  

300

Find the missing side:


5x + 5

400

Name this polynomial:

6

Constant monomial

400

(5a3 + 3a2 – 6a + 12a2) + (7a3 – 10a)

12a3 + 15a2 – 16a

400

(2x2 – 3x2 + 1) – (x2 + x + 1)

-2x2 - x

400

(x2 – 4x + 1)(x2 + 5x – 2)

x4 + x3 - 22x2 + 13x – 2

400

Find the Perimeter:


20x + 40

500

Name this polynomial:

–3y8 + 18y5 + 14y

8th-degree trinomial

500

(10xy + x) + (–3xy + y)

7xy + x + y

500

(2.5ab + 14b) – (–1.5ab + 4b)

4ab + 10b

500

(a + 2b)3

a3 + 6a2b + 12ab2 + 8b3

500

Find the area of the shaded region:


66x3 + 40x2 + 24x

M
e
n
u