Properties of Equality
2 COLUMN PROOFS
ANGLES FORMED BY TRANSVERSALS
FIND THE VALUE OF THE MISSING VARIABLE
STATEMENTS
100

NAME THAT PROPERTY: A=B then A=B

REFLEXIVE PROPERTY

100

GIVEN -9(2X-3)=63; PROVE X=-2

1.

2.

3.

4.

1. -9(2X-3)=63   *GIVEN*

2. -18X+27=63   *DISTRIBUTIVE*

3.-18X=36          *SUBTRACTION*

4. X=-2              * DIVISION*

100

WHAT IS THE DEFINITION OF A TRANSVERSAL?

A LINE THAT INTERSECTS TWO OR MORE LINES

100

ANGLE 1 AND ANGLE 2 ARE A LINEAR PAIR. 

ANGLE 1 = 4X+6

ANGLE 2= 5X+3

SOLVE FOR X

X=19

100

IF PQ+RS=PS AND RS=XY, THEN PQ+XY=PS

NAME THAT PROPERTY

SUBSTITUTION PROPERTY

200
NAME THAT PROPERTY: 

IF A=B THEN A+C =B+C

ADDITION PROPERTY OF EQUALITY

200

GIVEN A/-6+2=5' PROVE A=-18

1. 

2.

3.

1. A/-6+2=5      *GIVEN*

2. A/-6=3          *SUBTRACTION*

3. A=-18           *MULTIPLICATION*

200

WHAT IS THE DEFINITION OF CORRESPONDING ANGLES?

ANGLES ON THE SAME SIDE OF THE TRASNVERSAL AND IN THE SAME POSITION

200

ANGLE 1= (9X+2)

ANGLE 4= 119

ANGLE 1 AND ANGLE 4 ARE ALTERNATE INTERIOR ANGLES

SOLVE FOR X

X=13

200

IF JK+LM=NP, THEN JK=NP

NAME THAT PROPERTY

ADDITION PROPERTY
300

IF A(B+C), THEN A(B+C) =AB+BC

DISTRIBUTIVE PROPERTY

300

5N=42=12N; PROVE N=-6

GIVE REASONING:

1. 5N-42=12N

2.-42=7N

3.-6=N

4.N=-6

1. GIVEN

2. SUBTRACTION

3.DIVISION

4.SYMMETRIC

300

WHAT IS THE DEFINITION OF ALTERNATE EXTERIOR ANGLES?

EXTERIOR ANGLES, NON-ADJACENT, AND ON OPPOSITE SIDES OF THE TRANSVERSAL

300

ANGLE 1= 9X+25

ANGLE 2= 13X-19

ANGLE 3= 17Y+5

ANGLE 1 AND ANGLE 2 ARE CORRESPONDING ANGLES.

ANGLE 2 AND ANGLE 3 ARE A LINEAR PAIR

SOLVE FOR X 


X=11

300

IF ANGLE 1 AND ANGLE 2 ARE VERTICAL ANGLES THEN, ANGLE 1 AND ANGLE 2 ARE A VERTICAL ANGLE PAIR.

NAME THAT JUSTIFICATION

DEFINITION OF VERTICAL ANGLES

400

NAME THAT PROPERTY:

IF 10X+W=41 AND W=1, THEN 10X+1=41


SUBSTITUTION PROPERTY

400

GIVEN -3(2X+7)=-29; PROVE X=4

1.-3(2X+7)=-29-4X

2. -6X-21=-29-4X

3.-2X-21=-29

4.-2X=-8

5.X=4

1. GIVEN

2. DISTRIBUTIVE

3. ADDITION

4. ADDITION

5. DIVISION

400

WHAT IS THE DEFINITION OF CONSECUTIVE INTERIOR ANGLES?

INTERIOR ANGLES THAT ARE ON THE SAME SIDE OF THE TRANSVERSAL

400

ANGLE 1= 6X-7

ANGLE 2=8Y+17

ANGLE 3= 3X-29

ANGLE 1 AND ANGLE 2 ARE A VERTICAL PAIR

ANGLE 1 AND ANGLE 3 ARE CONSECUTIVE INTERIOR

SOLVE FOR X AND Y

X=24

Y=15

400

 MEASURE OF ANGLE ABD + MEASURE OF ANGLE DBC= MEASURE OF ANGLE ABC 

NAME THAT REASON

ANGLE ADDITION POSTULATE

500

NAME THAT PROPERTY:

IF 4W-1=11, THEN 4W=12

ADDITION PROPERTY OF EQUALITY

500

GIVEN 6X-2Y=14; PROVE Y=3X-7

1.

2.

3.

1. 6X-2Y=14 GIVEN

2.-2Y=-6X+14 SUBTRACTION

3. Y=3X-7  DIVISION

500

LIST WHETHER THE FOLLOWING ANGLES ARE CONGRUENT OR SUPPLEMENTARY.

1. CORRESPONDING ANGLES

2. ALTERNATE INTERIOR ANGLES

3. ALTERNATE EXTERIOR ANGLES

4. CONSECUTIVE INTERIOR ANGLES

5. LINEAR ANGLES

6. VERTICAL ANGLES


1.CONGRUENT

2. CONGRUENT

3. CONGRUENT

4. SUPPLEMENTARY

5. SUPPLEMENTARY

6. CONGRUENT

500

ANGLE 1 = 7X+12

ANGLE 2= 12X-28

ANGLE 3= 9Y-77

ANGLE 1 AND ANGLE 2 ARE ALTERNATE INTERIOR ANGLES

ANGLE 2 AND ANGLE 3 FORM A LINEAR PAIR.

SOLVE FOR X AND Y

X=8

Y=21

500

IF ANGLE 1 AND ANGLE 2 ARE A LINEAR PAIR, THEN ANGLE 1 AND ANGLE 2 ARE SUPPLEMENTARY ANGLES.

NAME THAT REASONING

SUPPLEMENT THEOREM

M
e
n
u