Linear Functions
Quadratic Functions
Cubic Functions
Finding X or Y
100

The degree of this function

1

100

Describe the end behaviour of this function

Quadrant 3 -> 4

100
The number of possible turning points

0 or 2

100

The x value when using this function at y= 276.5

f(x)= 46.8x + 276.5

x = 0

200

The number of turning points for linear functions

0

200

Number of possible x-intercepts

0, 1, or 2

200

The degree of this function

3

200

The y value when using this function at x= -1

f(x)= x2 - 2x + 1

y = 4

300

the domain of this function

y = 46.8x + 276.5

x is all real numbers 

300

A picture of a graph with the range

{y <= 5}

300

The end behaviour for this function

f(x) = –5x3 + 5x2 – 20x + 20

Quadrants 2 -> 4

300

The x value when using this function at y= 1

f(x)= x2 - 2x + 1

x = 0

400

The x-intercept for this specific function

y = 46.8x + 276.5


x = -5.9

400

The sign of this function's leading coefficient. 

Negative (y = -x2 + 5) 

400

Number of x-intercepts for this specific function

f(x) = –5x3 + 5x2 – 20x + 20

 1

400

The y value when using this function at x = -4

 f(x) = –5x3 + 5x2 – 20x + 20

y = 380

500

The regression equation for this set of data (to the nearest tenth)

X= -2.5, -1.5, -0.5, 0, 0.5

y = 165, 204, 250, 284, 304

40.7x + 259.7

500

The regression equation for this set of data (to the nearest tenth)

X= 1, 2, 3, 4, 5

y = 100.8, 101.3, 101.5, 100.9, 99.8


-0.3x2 + 1.5x + 99.6

500

The regression equation for this set of data (to the nearest hundredth)

X= 2, 4, 7, 10, 12

y = 135, 120, 105, 102, 99

-0.04x3 + 1.24x2 - 14.45x + 159.57

500

The x value when using this function at y= 1

 f(x) = –5x3 + 5x2 – 20x + 20

x = 1.1

M
e
n
u