Chain Rule
Euler's Number
Natural Logs
Slopes & Tangent Lines
Tables of Chain Rule
100

d/dx(4x^3+2)^7=

7(4x^3+2)^6(12x^2)

100

d/dxe^(8x)=

8e^{8x}

100

d/dxln(4+5x)=

5/(4+5x)

100

Evaluate the derivative of f(x) at x = 1 

f(x)=(-2x)/e^(3x)

\frac{4}{e^3}

100

If h(x)=f(g(x)), find h ' (0)

-4

200

d/dx(3\cdot sqrt(7x+1))=

\frac{3}{2}(7x+1)^{-\frac{1}{2}}(7)

200

d/dx5(e^(2x)+1)=

10e^{2x}

200

d/dxlnsqrt(4+5x)=

1/2*5/(4+5x)

200

Evaluate the derivative of f(x) at the point x = -2.

f(x)=3ln(1-x)

-1

200

If h(x)=g(f(x)), find h ' (0)

-12

300

d/dx [5x(3x-1)^4]=

5(3x-1)^4+4(3x-1)^3(3)(5x)

300

d/dxe^(2x)Sin(3x)=

2e^(2x)(sin3x)+(cos3x)(3)(e^{2x})

300

d/dxcos(lnx)=

-1/x*sin(lnx)

300

What is the slope of the line tangent to the graph of f(x) at the point where x=pi/4? 

f(x)=ln(3sinx)

1

300

If p(x)=k(m(x)), find p ' (-2)

-5

400

\frac{d}{dx}4cos^2(3x)=

8(cos3x)(-sin3x)(3)

400

Differentiate and simplify your result:

d/dx(x^3e^x-xe^x)=

e^x(3x^2+x^3-1-x)

400

d/dxx^2ln(4x+3)=

2xln(4x+3)+\frac{4}{4x+3}(x^2)

400

What is the equation of the line tangent to f(x) where x=0?

f(x)=3e^-x-1

y-2=-3(x-0)

400

If p(x)=m(k(x)), find p ' (-2)

21

500

\frac{d}{dx}5xsin^2(\pix)=

5(sin\pix)^2+2(sin\pix)(cos\pix)(\pi)(5x)

500

Differentiate and simplify your result:

d/dx(e^x+2)/(e^-x+1)=

(e^x+2e^-x+2)/(e^-x+1)^2

500

d/dxln(sec(2x)+tan(2x))

(2sec(2x)tan(2x)+2sec^2(2x))/(sec(2x)+tan(2x))

500

9/(2e)

500

If p(x)=m(m(x)), find p ' (4)

7

M
e
n
u