Sine
Cosine
Tangent
CSC,SEC, COT
Labeling the Unit Circle
100
Sin(2π/3)
√3/2
100

Cos(5π/6)

-√3/2

100

Tan(3π/4)

-1

100
SEC( 2π/3)
-2
100

Give the coordinates for the right side of the Unit Circle. (Start from top, go clockwise)

(0,1); (1/2, √3/2); (√2/2, √2/2); (√3/2, 1/2); (1,0);(√3/2, -1/2); (√2/2, -√2/2); (1/2, -√3/2); (0,-1)

200
Sin(315° )
-√2/2
200

Cos(270°)

0

200

Tan(120°)

-√3

200
CSC(300°)
-2√3/3
200

Give the coordinates for the left side of the Unit Circle. (Start from top, go counter clockwise)

(0,1); (-1/2, √3/2); (-√2/2, √2/2); (-√3/2, 1/2); (-1,0); (-√3/2, -1/2); (-√2/2, -√2/2); (-1/2, -√3/2); (0,-1)

300

Sin(45°) + Sin(210° )

(√2-1)/2

300

Cos(135°) + Cos(300°)

(1-√2)/2

300

Tan(π/3) × Tan(7π/4)

-√3

300

COT(210°)

√3

300

Give the degrees for the top half of the unit circle. (start at 0°, go counter clockwise)

0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°

400
Sin(5π/3) - Sin(4π/3)
0
400

Cos(π/6) + Cos(11π/6)

√3

400

Tan(120°) ÷ Tan(330°)

3

400
CSC(2π/3) + CSC(7π/6)
(-2√3 + 6) /3
400

Give the degrees for the bottom half of the unit circle. (Starting at 180°, go counter clockwise)

180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°

500
Sin(150°) ÷ Sin(π/3)
1/√3
500

Cos(225°) × Cos(5π/6)

√6/4

500

[Tan(5π/6) + Tan(4π/3)] ÷ Tan(π/6)

2

500

[CSC(135°)+ SEC(30°)]/ COT(240°)

2+√6

500

Give the radians for the entire Unit Circle. (start from 0, go counter clockwise)

0, π/6, π/4, π/3, π/2, 2π/3, 3π/4, 5π/6, π, 7π/6, 5π/4, 4π/3, 3π/2, 5π/3, 7π/4, 11π/6, 2π

M
e
n
u