Cos(5π/6)
-√3/2
Tan(3π/4)
-1
Give the coordinates for the right side of the Unit Circle. (Start from top, go clockwise)
(0,1); (1/2, √3/2); (√2/2, √2/2); (√3/2, 1/2); (1,0);(√3/2, -1/2); (√2/2, -√2/2); (1/2, -√3/2); (0,-1)
Cos(270°)
0
Tan(120°)
-√3
Give the coordinates for the left side of the Unit Circle. (Start from top, go counter clockwise)
(0,1); (-1/2, √3/2); (-√2/2, √2/2); (-√3/2, 1/2); (-1,0); (-√3/2, -1/2); (-√2/2, -√2/2); (-1/2, -√3/2); (0,-1)
Sin(45°) + Sin(210° )
(√2-1)/2
Cos(135°) + Cos(300°)
(1-√2)/2
Tan(π/3) × Tan(7π/4)
-√3
COT(210°)
√3
Give the degrees for the top half of the unit circle. (start at 0°, go counter clockwise)
0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°
Cos(π/6) + Cos(11π/6)
√3
Tan(120°) ÷ Tan(330°)
3
Give the degrees for the bottom half of the unit circle. (Starting at 180°, go counter clockwise)
180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°
Cos(225°) × Cos(5π/6)
√6/4
[Tan(5π/6) + Tan(4π/3)] ÷ Tan(π/6)
2
[CSC(135°)+ SEC(30°)]/ COT(240°)
2+√6
Give the radians for the entire Unit Circle. (start from 0, go counter clockwise)
0, π/6, π/4, π/3, π/2, 2π/3, 3π/4, 5π/6, π, 7π/6, 5π/4, 4π/3, 3π/2, 5π/3, 7π/4, 11π/6, 2π