Terminal Points
Trigonometric Functions
Even/Odd Properties & Identities
Trigonometric Graphs
100

Find the y-coordinate of P(-3/5,y) if P lies on the 3rd quadrant of the unit circle.

y=-4/5

100

Evaluate sint , cost, and tant determined by t=pi/2 .

sin(pi/2)=1

cos(pi/2)=0

 tan(pi/2)= undefined

100

Find the relationship between a) sin(-pi/6) and sin(pi/6) , b) cos(-pi/4) and cos(pi/4) and c) tan(-pi/3) and tan(pi/3)

sin(-pi/6)=-sin(pi/6)

cos(-pi/4)=cos(pi/4)

tan(-pi/3)=-tan(pi/3)

100

Find the period and the phase shift of y=-tan2(x+pi/4).

p=pi/2 and it is shifted pi/4

units to the left.

200

Find the terminal point P(x,y) on the unit circle determined by t=-3pi .

P(-1,0)

200

Evaluate sint , cost, and tant when the terminal point determined by t is P(3/5,-4/5) .

sint=-4/5

cost=3/5

tant=-4/3

200

Determine whether f(x)=tanx * sinx is even, odd, or neither.

Even

200

Find the range of f(x)=2/3sin(3x) .

[-2/3,2/3]

300

Find the terminal point P(x,y) on the unit circle determined by t=(7pi)/4 .

P(sqrt2/2,-sqrt2/2)

300

Evaluate sint , cost, and tant determined by t=-(3pi)/4 .

sin(-(3pi)/4)=-sqrt2/2

cos(-(3pi)/4)=-sqrt2/2

tan(-(3pi)/4)=1

300

If cost=-4/5 and t is in Quadrant III, find sint and tant.

sint=-3/5

tant=3/4

300

Find the amplitude, period, and phase shift of  y=3cos(pix-pi/2).

|a|=3, p=2, and it is shifted 1/2 units to the right.

400

Find the terminal point P(x,y) on the unit circle determined by t=-(11pi)/3 .

P(1/2,sqrt3/2)

400

Evaluate sint , cost, and tant determined by t=(73pi)/6 .

sin((73pi)/6)=1/2

cos((73pi)/6)=sqrt3/2

tan((73pi)/6)=sqrt3/3

400

Determine whether  f(x)=(sin^3x*cosx)/(x*tan^5x)  is even, odd, or neither.

Odd

400

Find the amplitude, period, and phase shift of y=2sec(4x+pi/3).

|a|=2, p=pi/2, and it is shifted pi/12 units to the left.

500

Find the terminal point P(x,y) on the unit circle determined by t=(29pi)/6 .

P(-sqrt3/2,1/2)

500

Evaluate sint , cost, tant, csct, sect, and cott, determined by t=(2pi)/3 .

sin((2pi)/3)=sqrt3/2

cos((2pi)/3)=-1/2

tan((2pi)/3)=-sqrt3

csc((2pi)/3)=(2sqrt3)/3

sec((2pi)/3)=-2

cot((2pi)/3)=-sqrt3/3

500

If tant=5/12 and cost>0, find sint and cost.  

cost=12/13

sint=5/13

500

Write an equation that represents the function in the form y=acos(b(x+c))+d .


y=-3cos(2x)-1

M
e
n
u