Chain rule
Product rule
Quotient rule
Higher derivatives
Wild Card
100

y=(2x+1)^2

y'=4(2x+1)

100

f(x)= x^2(2x+4)

Find f'(x)

f'(x)=2x(2x+4)+2x^2

f'(x)=4x(x+3)


100

Differentiate

y=1/(x+1)

y'=-1/(x+1)^2

100

Find the third derivative of 

f(x)=x^3-x^2+x-1

f'''(x)=6x-2

100

Differentiate 

4x^2+(4/x^2)

8x-8/x^3

200

Find y'(x) when

y=10(x^2-3)6

y'(x)=120x(x^2-3)^5

200

f(x)= e^(2x-2)(x^(-2))

Find f'(x)

f'(x)=2e^(2x-2)(x^(-2)-x^(-3))

200

Find f'(x) when 

f(x)=(3x)/(x+5)

15/(x+5)^2

200

Find the fourth derivative of 

f(x)=2x^3+x

f^4(x)=0

200

Find when the particle, x, is stationary if f(x)=x3.

Stationary at (0,0)

300

Find f'(x) when

f(x)=(5x^2-4)^7

f'(x)=70x(5x^2-4)^6

300

f(x)=x^3(2x+3)

f'(x)=?

f'(x)=8x^3+9x^2

300

Find the stationary points for

y=(2x+5)^2/x

Stationary points at 

(-2.5,0) and (2.5, 40)


300

Find the fourth derivative of:

y=1/x

y^((4))=24/x^5

300

Find the equation of the tangent to the curve 

y=x^2+5x-3

at the point (2, 11).

9x-y-7=0

 

400

Find f'(x) if 

f(x)=(3x-1)^(1/2)

f'(x)= 3/2(3x-1)^(-1/2)


400

f(x)=(x+1)(2x+5)^4

f'(x)=?

f'(x)=(10x+13)(2x+5)^3

400

Differentiate:

(x^2+1)/e^(x^2-4)

-(2x^3)/(e^(x^2)-4)

400

Find the third derivative of

f(x)=x^(1/3)

f'(x)=(10x^(-8/3))/27

400

Find the equation of the tangent to the curve 

y=x^2+2x-5

that is parallel to the line

y=4x-1

4x-y-6=0

500

f(x)=2(x^2-3)^5

Evaluate f'(2).

f'(2)=40

500

f(x)=e^(x^2-x^3)(50x^(1/2))

f'(x)=25(e^(x^2-x^3))(4x^(3/2)-6x^(5/2)+x^(-1/2))

500

Differentiate: 

y=(\sqrt(x-1))/(2x-3)

y'=(-2x+1)/(2\sqrt(x-1)(2x-3)^2)

500

f(x)=e^(x^4)

f''(x)=?

f''(x)=2x^2e^(x^4)(6+8x^4)

500

A particle is moving along the x-axis. Its velocity, v, at time, t, is given by

v=\sqrt(20t-2t^2)

 metres per second. Find the acceleration of the particle when  t=4. Express your answer as an exact value in its simplest form. 

a=\sqrt(3)/6 ms^(-1)

M
e
n
u