Sequence
Synthetic Division
Remainder Theorem
Possible Roots
100

10th term in the Fibonacci Sequence

55

100

 2x2+ x by x - 1

 Q = 2x + 3 , R = 3

100

P(x)=x2 + 3x – 11

D(x)=x – 2

 -1

100

P(x)=2x2-3x2-11x+6

± 1,± 1/2,± 1/3,± 1/6,± 2,± 1/3,± 2/3 

200

1,2,4,_,_,32

8 & 16

200

7x5- 2x4 - 5x3 + x2 - 3x + 5 by x - 2

Q = 7x4 + 12x3 + 19x2 + 39x + 75, R = 155

200

 P(x)=x4 – 2x3 – x2 + 2x – 2 

D(x)= x – 4

118

200

P(x)=6x4-2x3+5x2+x-10

± 1,± 1/2 ,± 1/5,± 1/10,± 2,± 2/5,± 5,± 5/2

300

1,2,3,_,_,_,7

4,5 & 6

300

(1/2)x3 - (1/3)x2 - (3/2) x + 1/3 by x - 1/2

Q = (1/2)x2 - (1/2)x - 37/24 , R = -7/16

300

P(x)= x4 – x3 – x2 – x – 1 

D(x)= x – 3

41

300

P(x)=6x3+31x2+4x-5

± 1,± 1/2,± 1/3,± 1/6,± 5,± 5/2,± 5/3,± 5/6

400

2,__,8,__,14,__20

5,11,17

400

(x4-3x3+x2+4x-5) ÷ (x2+x-2)

1,-4,7,11,9


∴ x4-3x3+x2+4x-5=(x2x-2)(x2-4x+7)-11x+9

400

P(x)=3x3-2x2+x-6

D(x)=x-4

158

400

x3+x2+6=0

±1,± 2,±3,±6

500

2,4,__,__,__,__,128,__

8,16,32,64,256

500

(x6+x4+2x2-828) ÷ (x-3)

1,3,10,30,92,276,0


Thus,

(x6+x4+2x2-828) ÷ (x-3)=

x5+3x4+10x3+30x2+92x+276



500

P(x)=x6+4x5+9x3-4x2+10

D(x)=x+1

-6

500

2x3+12x2+16x+6=0

±1,±2,±3,±,±1/2,±3/2