4.1
4.2
4.3
4.4
Rectilinear Motion
100

The equation for linearization.

What is L(x)=f’(a)(x-a)+f(a)

100

The reason why extrema may not exist on an interval.

What is a discontinuity or open interval. 

100

Conditions for application of MVT.

What is the function must be continuous and differentiable on interval [a, b].

100

The point where concavity changes.

What is an inflection point.

100

what is represented by f(x), f'(x), and f''(x)

f(x)=s(t)=position

f'(x)=v(t)=velocity

f''(x)=a(t)=acceleration

200

The cube root of 27 is 3. How much larger is the cube root of 27.2? Estimate using linear approximation.

f(27+.2) - f(27)= 0.00739

f'(y)dy = 1/3(x)-2/3 dy = 1/3(27)-2/3 (.2) = 0.00741

I0.00739-0.00741I= 0.00002

200

Determine whether Rolle's theorem applies to the following function on the given interval then, if so, find the points guaranteed to exist:

f(x)=sin(2x) [0, pi/2]

continuous: yes

differentiable: yes

f(0)=0  f(pi/2)=0

f'(x)=2cos(2x)=0

x= pi/4 and 3pi/4

200

Use the MVT to determine the values of c for:

f(x)=(x-2) on [1, 4]

f'(x)=2(x-2)

f(1)=(1-2) f(4)=(4-2)2=4

(4-1)/(4-1)=1

2(c-2)=1  c=(5/2)  f'(5/2)=1

200

Find the first and second derivative of the following: 

f(x)=ln(2x+4)

f'(x)=1/(x+2)

f''(x)=-1/(x+2)2

200
If s(t)=1.5x4+(2/3)x3-234x2+67, find v(t) and a(t).

v(t)=6x3+2x2-468x

a(t)=18x2+4x-468

300

How accurate is L(a+.1) ≈ f(a+.1)?

f(x)=ln(x+1)  a=0

f(0)=ln(1)=0  f'(0)=1/1=1

L(0.1)/0.1=.1

f(0.1)/ln(1/1)=.0953

I.1-0.0953I=.0046

300

Find the critical points for the function: 

f(x)=(4-x)1/2

f'(x)=-x/(4-x)1/2 

-x=0 x=0

(4-x)1/2 =0 x=+/- 2

300

Use the first derivative test to find intervals where increasing and decreasing of: 

f(x)=x2/(24-3x)

f'(x)=(48x-9x2)/(24-3x)2

f'(x)=0    x=0, 16/3     cp: 0, 16/3, 8

Test values: -1(-), 1(+), 6(-), 9(-)

Decreasing: (-inf, 0), (16/3, 8), (8, inf)

Increasing: (0, 16/3)

300

Use the second derivative test to find the relative extrema of the following: 

f(x)= x1/2-2cosx

f'(x)= 21/2+2sinx=0   x= 3pi/4 and 7pi/4

f''(x)=2cosx  f''(3pi/4)=- f''(7pi/4)=+

Relative max: 7pi/4

Relative min: 3pi/4

300

Find the total distance traveled by the particle for the following function from [0, 2]: 

f(x)=x3-6x2+9x

f'(x)=3x2-12x+9   x=1 and 3

f''(x)=6x-12   x=2        crit points on [0,2]=0, 1, 2

f(0)=0   f(1)=4   f(2)=2

------0-----2-----4------

total distance: 4

400

Calculate the linearization of: f(x)= 1/(2+x)1/2 at a=2 

L(x)=f'(a)(x-a)+f(a)

f'(2)=-1/2(2+x)3/2 =-1/16

(-1/16)(x+2)+(1/2)=(-1/16)x + 3/8

400

Find the extreme values of the function on the given interval: 

f(x)=x2/3-2x1/3  on [-1, 3]

f'(x)=2x-1/3-2/3x-2/3   cp: 0, 1

f(-1)=3  abs. max

f(0)=0

f(1)=-1 abs. min

f(3)=-0.804 local min

400

Find the intervals where increasing and decreasing and locate all relative extrema for:

f(x)= (1/2)x-sinx

f'(x)= (1/2)-cosx=0

x= pi/3 and 5pi/3

Test values: pi/4(-), pi/2(+), 7pi/4(-)

Increasing: (pi/3, pi/5)

Decreasing: (-inf, pi/3) and (5pi/3, inf)

400

Find the intervals of concavity and inflection points of the following function:

f(x)=t3((6-x)2)1/2

f'(x)=(18-3x)/3(6-x)1/3  f''(x)=(10x-72)/9(6-x)4/3

f''(x)=0  x=7.2 and 6

f''(5)=-  f''(7)=-  f''(8)=+

conc down: (-inf, 6) and (6, 7.2) conc up: (7.2, inf)

Inflection point: (7.2, 8.131)

400

Find the v(t), a(t), displacement, and total distance traveled for the following function on the given interval:

s(t)=t3-9t2+24t+20  on [1.5, 7]

v(t)=3t2-18t+24   a(t)=6t-18

s(7)-s(1.5)=90-39.125=50.875

v(t)=0  t=2 and 4

s(1.5)=39.125  s(2)=40  s(4)=36  s(7)=90

---36---39.125---40---90---

0.875+4+54=58.875

500

Calculate the linearization of f(x)=sin(ln(2x)) at a=pi

f'(x)=cos(ln(2x))/x  

f(pi)=0.965   f'(pi)=-0.084  

-0.084(x-pi)+0.965=-0.084x-1.229

500

Find the extrema of the function:

f(x)=(2x2)/(x-1)

f'(x)=(2x2-4x)/(x-1)2

2x2-4x=0 x=0,2       (x-1)2=0 x=1

------0------1-------2------

f'(-1)=1.5  f'(.5)=-6  f'(1.5)=-6  f'(3)=15

Increasing, decreasing, decreasing, increasing

Local max: x=0   Local min: x=2


500

Find the intervals where increasing and decreasing of the following function: 

f(x)=(x2-3)/(x-2)

f'(x)=(x2-4x+3)/(x-2)2

(x-3)(x-1)/(x-2)2     x=3, 1, 2

asymptote at x=2

Increasing: (-inf, 1) and (3, inf)

Decreasing: (1, 2) and (2, 3)

500

Identify the domain, y', y'', cp, intervals where increasing decreasing, max/min values, p.o.i, and concavity for the following: 

f(x)=5x2/5-2x

Domain: (-inf, 0) u (0, inf)

f'(x)=2x-3/5-2   x=1

f''(x)=-6/5x-8/5

Increasing: -    Decreasing: (-inf, 1) u (1, inf)

No min or max, no inflection points

500

Given that s(t)=x-cos(x2)/2, find v(t), a(t) and the total distance traveled from [0, 2].

v(t)=tsin(t2)  a(t)=2t2cos(t2)+sin(t2)

v(t)=0  t=0, pi1/2, -(pi1/2)

s(0)=0  s(pi1/2)=1.386  s(2)=1.327

---0---1.327---1.386---

1.386+0.059=1.445