Find the Axis of Symmetry:
4x2 - 16x + 10
2
Add the Polynomials:
(5x + 3) + (3x + 5)
8x + 8
Multiply the Polynomials:
(x - 2) (3x - 9)
3x2 - 15x + 18
Find the Discriminant:
x2 + 6x + 3
24
Factor completely:
8x + 4
4(2x + 1)
Find the Axis of Symmetry & Vertex:
-3x2 + 12x - 10
Axis of Symmetry: 2
Vertex: (2, 2)
Subtract the Polynomials:
(3v - 23) - (21v - 2)
(-18v - 21)
Multiply the Polynomials:
(5x - 10) (12x + 3)
60x2 - 105x - 30
Solve using the Quadratic Formula:
x2 − x = 6
(3, -2)
Solve the Equation by Completing the Square:
a2 + 14a - 51 = 0
(3, -17)
Find the Axis of Symmetry:
3x2 - 6x + 15
1
Add the Polynomials:
(5p2 - 3) + (2p2 - 3p3)
-3p3 + 7p2 - 3
Multiply the Polynomials:
(2x2 + 5x + 2) (8x + 1)
16x3 + 42x2 + 21x + 2
Find the Discriminant:
6x2 + 12x + 87
-1944
Solve the Equation by Completing the Square:
n2 - 3n - 3 = 0
(3, -1)
Find the Vertex:
y = x2 + 12x + 45
(-6, 9)
Add the Polynomials:
(-x4 + 13x5 + 6x3) + (6x3 + 5x5 + 7x4)
18x5 + 5x4 + 12x3
Square the Polynomial:
(2x + 2)2
4x2 + 8x + 4
Solve using the Quadratic Formula:
2x2 + 2x − 7 = 0
(-1 + (the square root of 15))/2
(-1 + (the square root of -15))/2
Factor Completely:
x2 + 7x +10
(x + 5) (x + 2)
Find the Vertex:
y = -x2 - 8x - 20
(-4, -4)
Subtract the Polynomials:
(3a2 + 4b2 + 3c + 5b2 + 3c2 + 7abc) + (3ab + 3c2 + 4c) + (3a2 + 3c2)
(7abc + 3ab + 6a2 + 9b2 + 9c2 + 7c)
Multiply the Polynomials:
(5x5 + 2x4 + 12x3 + 4x2 +3x - 2) (8x5 + 6x4 + 12x3 + 6x2 + 5x - 1)
(80x8 + 40x7 - 74x6 + 51x5 + 14x4 - 84x3 - 52x2 - 27x + 18)
Find the Discriminant:
63x2 + 45678x +58
2086465068
Complete the Equation by Completing the Square:
3x2 = -4 + 8x
(2, 2/3)