Solving quadratics
Factor
Exponents
Logs
Systems of equations
100


x^2 = 16



  1. x = +4 or -4


100


x^2 - 9



(x - 3)(x + 3)


100


  1. 3^2 x 3^3


3^5=243 

100


  1. logbase{10}of (100)


2

100


  1. x + y = 10
    x - y = 4


X=7, y=3

200


x^2 - 5x = 0


X=0,5

200


x^2 + 7x + 12



(x + 3)(x + 4)


200


(2x^3)^2



4x^6


200


log(25) + log(4)


2

200


2x + 3y = 12
x - y = 1


X=3 y=2

300


x^2 + 6x + 9 = 0


X=-3

300


2x^2 + 5x + 3



(2x + 3)(x + 1)


300

{5x^7}/{x^3}


5x^4

300


  1. x: log(x) = 3


1000

300


3x - y = 5
2x + y = 4


X=1,y=2

400


2x^2 - 3x - 2 = 0


X=2,-0.5

400


x^3 + 3x^2 - x - 3



(x + 3)(x - 1)(x + 1)


400


x: 2^x = 16


4

400


  1. x: log base 2(x) = 5


32

400


x^2 + y = 10
y = 2x


X=2,-5 Y=4,-10

500


3x^2 + 4x + 5 = 0


x=-2+i(radical(11))/3, 

x=-2-i(radical(11))/3 

500


x^4 - 16



 (x - 2)(x + 2)(x^2 + 4)


500


x: 3^{x+1} = 81


X=3

500


x: 3^{x+1} = 81


X=3

500


x + y + z = 6
2x - y + z = 3
x + 2y - z = 4

X=2, y=1, z=3