Square of a Binomial
Sum & Difference
Cube of a Binomial
Product of the form
Square & cube
1

What is the expansion of (x+2)2?
a. x2+4
b. x2+2x+4
c. x2+4x+4
d. x2+6x+2

C

1

The difference of squares formula can be applied to find the product of (x+4)(x−4) (x−4), which represents the product of the sum and difference of two terms. What is the result?
a. x- 16
b. x2−8x+16
c. x2 +16
d. x2+4x−16  

A

1

Expand (x+y)3

a. x3 + 2x2y + 2xy2 + y3

b. x3 - 3x2y + 3xy2 - y3

c. x3 + xy + 2xy + y3

d. x3 + 3x2y + 3xy2 + y3

D

1

Tell if the expression follows the form

(n−3) ( n2 -3n +9)

No

1

82

64

2

Expand: (x + 3)2

x2 + 6x +9

2

Find the product: (2a+6)(2a−6) .

4a2−36

2

In the expansion of (2y−5)3 , what is the first term?
a. 2y3 
b. 8y3 
c. 60y2
d. 125

B

2

Tell if the expression follows the form

(n+5) ( n2 -5n +25)

Yes

2

142

196

3

Find the square of (3x−4)2  

9x2 −24x + 16

3

Simplify(12m2 + 7 ) (12m2 ─ 7 )

144m4 - 49

3

Simplify(x+4)3

x3  +12x2+ 48x + 64

3

Simplify: (m+9)(m2−9m+81)

A. m3- 729            B. m3- 81          

C. m3- 9               D. m3 + 729

  D

3

(-8x)3

512x3

4

Simplify (7y−5)2)

49y2−70y+25

4

Simplify :(4x2y4 + 11 ) (4x2y4 ─ 11 )

16x4y8 ─ 121

4

(y-6)3

y3-18y2+108y-216

4

Find the product: (3x+7)(9x2−21x+49)

27x3+ 343

4

282

784

5

A square garden has its side increased by 9 meters. If the original side length is 3x meters, the new area of the garden can be expressed as (3x+9)2 . What is the expanded form of the area?

9x2 +54x +81

5

The side lengths of a rectangle are (5x3+13)  and (5x3−13). Using the product of the sum and difference of two terms, what is the area of the rectangle?

25x6 - 169

5

(5x+2y)3 

125x+150x2y + 60xy2+8y3

5

Simplify: (2m+11)(4m2−22m+121)

8m3+1331

5

(12x)3

1728x3